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The Chow form of the essential variety in computer vision is 
calculated. Our derivation uses secant varieties, Ulrich sheaves 
and representation theory. Numerical experiments show that our 
formula can detect noisy point correspondences
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1. Introduction

The essential variety E is the variety of 3 × 3 real matrices with two equal singular values, and 
the third one equal to zero (σ1 = σ2, σ3 = 0). It was introduced in the setting of computer vision; 
see Hartley and Zisserman (2004, §9.6). Its elements, the so-called essential matrices, have the form 
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T R , where T is real skew-symmetric and R is real orthogonal. The essential variety is a cone of 
codimension 3 and degree 10 in the space of 3 ×3-matrices, defined by homogeneous cubic equations, 
that we recall in (2). The complex solutions of these cubic equations define the complexification EC
of the essential variety. While the real essential variety is smooth, its complexification has a singular 
locus that we describe precisely in §2.

The Chow form of a codimension c projective variety X ⊂ Pn is the equation Ch(X) of the divisor 
in the Grassmannian Gr(Pc−1, Pn) given by those linear subspaces of dimension c − 1 which meet X . 
It is a basic and classical tool that allows one to recover much geometric information about X ; for 
its main properties we refer to Gelfand et al. (1994, §4). In Agarwal et al. (2017, §4), the problem of 
computing the Chow form of the essential variety was posed, while the analogous problem for the 
fundamental variety was solved, another important variety in computer vision.

The main goal of this paper is to explicitly find the Chow form of the essential variety. This 
provides an important tool for the problem of detecting if a set of image point correspondences 
{(x(i), y(i)) ∈ R2 × R2 | i = 1, . . . , m} comes from m world points in R3 and two calibrated cameras. 
It furnishes an exact solution for m = 6 and it behaves well given noisy input, as we will see in §4. 
Mathematically, we can consider the system of equations:{

A X̃ (i) ≡ x̃(i)

B X̃ (i) ≡ ỹ(i).
(1)

Here x̃(i) = (x(i)
1 : x(i)

2 : 1)T ∈ P2 and ỹ(i) = (y(i)
1 : y(i)

2 : 1)T ∈ P2 are the given image points. The un-

knowns are two 3 ×4 matrices A, B with rotations in their left 3 ×3 blocks and m = 6 points X̃ (i) ∈ P3. 
These represent calibrated cameras and world points, respectively. A calibrated camera has normal-
ized image coordinates, as explained in Hartley and Zisserman (2004, §8.5). Here ≡ denotes equality 
up to nonzero scale. From our calculation of Ch(EC), we deduce:

Theorem 1. There exists an explicit 20 × 20 skew-symmetric matrix M(x, y) of degree ≤ (6, 6) polynomi-
als over Z in the coordinates of (x(i), y(i)) with the following properties. If (1) admits a complex solution 
then M(x(i), y(i)) is rank-deficient. Conversely, the variety of point correspondences (x(i), y(i)) such that 
M(x(i), y(i)) is rank-deficient contains a dense open subset for which (1) admits a complex solution.

In fact, we will produce two such matrices. Both of them, along with related formulas we derive, 
are available in ancillary files accompanying the arXiv version of this paper, and we have posted 
them at http://math.berkeley.edu/~jkileel/ChowFormulas.html.

Our construction of the Chow form uses the technique of Ulrich sheaves introduced in Eisenbud 
et al. (2003b). We construct rank 2 Ulrich sheaves on the essential variety EC . For an analogous 
construction of the Chow form of K 3 surfaces, see Aprodu et al. (2012).

From the point of view of computer vision, this paper contributes a complete characterization 
for an ‘almost-minimal’ problem. Here the motivation is 3D reconstruction. Given multiple images of 
a world scene, taken by cameras in an unknown configuration, we want to estimate the camera 
configuration and a 3D model of the world scene. Algorithms for this are complex, and successful. See 
Agarwal et al. (2009) for a reconstruction from 150,000 images.

By contrast, the system (1) encodes a tiny reconstruction problem. Suppose we are given six point 
correspondences in two calibrated pictures (the right-hand sides in (1)). We wish to reconstruct both 
the two cameras and the six world points (the left-hand sides in (1)). If an exact solution exists then it 
is typically unique, modulo the natural symmetries. However, an exact solution does not always exist. 
In order for this to happen, a giant polynomial of degree 120 in the 24 variables on the right-hand 
sides has to vanish. Theorem 1 gives an explicit matrix formula for that polynomial.

The link between minimal or almost-minimal reconstructions and large-scale reconstructions is 
surprisingly strong. Algorithms for the latter use the former reconstructions repeatedly as core sub-
routines. In particular, solving the system (1) given m = 5 point pairs, instead of m = 6, is a subroutine 
in Agarwal et al. (2009). This solver is optimized in Nistér (2004). It is used to generate hypotheses 
inside random sampling consensus (RANSAC) (Fischler and Bolles, 1981) schemes for robust reconstruc-
tion from pairs of calibrated images. See Hartley and Zisserman (2004) for more vision background.
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