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Suppose that Y1, Y2, Y3 are finite sets and P ⊆ Y1 × Y2 × Y3. 
We say that P embeds in a group G if there exist injective maps 
φi : Yi → G for i = 1, 2, 3 such that φ1(y1)φ2(y2) = φ3(y3) for each 
(y1, y2, y3) ∈ P . Hirsch and Jackson asked for the cardinality of 
the smallest P that embeds in some infinite group but not into 
any finite group. We prove that the answer to their question is 12. 
Moreover, we show that there are 50 examples of cardinality 12, up 
to equivalence, and each of them embeds in the (infinite) Baumslag 
group G = 〈a, b | b = [b, ba]〉. Our proof uses computations to 
answer questions about finitely presented groups which are known 
to be algorithmically undecidable in general.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction and results

We define a partial Latin square (PLS) P to be a matrix in which some cells may be empty and in 
which each filled cell contains one symbol from an underlying alphabet �(P ), such that no symbol 
occurs more than once within any row or column. The size of P is the number of filled cells in P , and 
the shape S(P ) of P is the set of filled cells in P . We avoid degeneracies by insisting that each row 
and column contains at least one filled cell, and that each element of �(P ) appears at least once in P . 
A side-effect is that our PLS need not be square matrices. In some references, PLS are defined to be 
square matrices and to have at least as many rows as there are symbols. To achieve these properties 
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it is always possible to add empty rows and/or empty columns to our PLS. Allowing any finite number 
of empty rows and columns would create some technical nuisances but would not materially affect 
any of the questions we are interested in solving.

Let P = [Pi, j] be an m ×n PLS. An embedding φ : P ↪→ G of P into a group G is a triple (φ1, φ2, φ3)

of injective maps

φ1 : {1,2, . . . ,m} → G, φ2 : {1,2, . . . ,n} → G, φ3 : �(P ) → G,

such that φ1(i)φ2( j) = φ3(Pi, j) for all (i, j) ∈ S(P ). We refer to ri = φ1(i) for i = 1, . . . , m as the
row labels, and c j = φ2( j) for j = 1, . . . , n as the column labels. Intuitively, P embeds in G if a copy 
of P can be found within the Cayley table of G (in the subtable which has row and column labels 
r1, . . . , rm and c1, . . . , cn , respectively). We refer to Cavenagh and Wanless (2009) for a discussion 
of applications of embeddings of PLS in groups and connections with linear algebra and topological 
graph theory. Note that embedding in groups is a special type of completion problem for PLS. See 
Keedwell and Dénes (2015, Chap. 3) for an introduction to the rich literature of such problems.

A useful notion of equivalence for PLS is obtained by converting each PLS P into a set of triples 
T (P ) = {(r, c, Pr,c) : (r, c) ∈ S(P )}. We say that two PLS are from the same species if they produce the 
same set of triples, modulo uniform permutation of the 3 coordinates in the triples, and relabelling 
within each coordinate. The property of having an embedding in a given group is a species invariant 
Cavenagh and Wanless (2009, Lem. 1), so in this paper it will suffice to consider one representative 
from each species of PLS.

Hirsch and Jackson (2012, Ex. 3.7) gave an example of a PLS of size 29 that can be embedded in 
an infinite group, but not in any finite group. They noted that smaller examples exist, and posed the 
question of what the smallest possible size of such a PLS is. The purpose of this paper is to answer 
this question by proving:

Theorem 1. There are 50 species of PLS of size 12 that can be embedded in an infinite group, but not in any 
finite group. No PLS of smaller size has the same property.

One of the 50 PLS of size 12 is detailed in Lemma 7. The remainder of the paper discusses our 
computational approach which proves Theorem 1. These computations involve manipulating finite 
presentations for groups to test, for example, whether a group is finite or whether two group elements 
are equal. These questions are equivalent to solving the “word problem” and hence, in full generality, 
are well known to be algorithmically undecidable, cf. Holt et al. (2005, §5) or Robinson (1982, p. 54). 
So we were somewhat fortunate to find methods which solved the instances of these problems that 
we needed to solve.

For recent work related to this paper we refer to Wanless and Webb (2017), which identifies all 
smallest PLS that (a) do not embed into any group, (b) embed into a group but do not embed into 
any abelian group, or (c) embed into an abelian group but do not embed into any cyclic group. Each 
of those classes contains small PLS that can be found with simpler methods than we employ in the 
present paper.

2. The presentation defined by a PLS

The next lemma (cf. Cavenagh and Wanless 2009, Lem. 2) is an easy observation and shows that 
we lose no generality by assuming that the associated row and column labels of an embedding satisfy 
r1 = c1 = 1, the identity of the group.

Lemma 2. If a PLS P can be embedded into a group G, then it can be embedded with row labels r1, . . . , rm ∈ G
and column labels c1, . . . , cn ∈ G that satisfy r1 = c1 = 1, the identity in G.

Proof. If (φ1, φ2, φ3) : P ↪→ G is an embedding with associated row labels r1, . . . , rm and column 
labels c1, . . . , cn , then (φ′

1, φ
′
2, φ

′
3) : P ↪→ G defined by φ′

1(r) = r−1
1 φ1(r), φ′

2(c) = φ2(c)c−1
1 , and φ′

3(e) =
r−1

1 φ3(e)c−1
1 is an embedding with the required property. �
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