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When using cylindrical algebraic decomposition (CAD) to solve a 
problem with respect to a set of polynomials, it is likely not the 
signs of those polynomials that are of paramount importance but 
rather the truth values of certain quantifier free formulae involving 
them. This observation motivates our article and definition of a 
Truth Table Invariant CAD (TTICAD).
In ISSAC 2013 the current authors presented an algorithm that can 
efficiently and directly construct a TTICAD for a list of formulae 
in which each has an equational constraint. This was achieved by 
generalising McCallum’s theory of reduced projection operators. In 
this paper we present an extended version of our theory which 
can be applied to an arbitrary list of formulae, achieving savings 
if at least one has an equational constraint. We also explain how 
the theory of reduced projection operators can allow for further 
improvements to the lifting phase of CAD algorithms, even in the 
context of a single equational constraint.
The algorithm is implemented fully in Maple and we present both 
promising results from experimentation and a complexity analysis 
showing the benefits of our contributions.
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1. Introduction

A cylindrical algebraic decomposition (CAD) is a decomposition of Rn into cells arranged cylindrically 
(meaning the projections of any pair of cells are either equal or disjoint) each of which is (semi-)alge-
braic (describable using polynomial relations). CAD is a key tool in real algebraic geometry, offering a 
method for quantifier elimination in real closed fields. Applications include the derivation of optimal 
numerical schemes (Erascu and Hong, 2014), parametric optimisation (Fotiou et al., 2005), robot mo-
tion planning (Schwartz and Sharir, 1983), epidemic modelling (Brown et al., 2006), theorem proving 
(Paulson, 2012) and programming with complex functions (Davenport et al., 2012).

Traditionally CADs are produced sign-invariant to a given set of polynomials (the signs of the poly-
nomials do not vary within each cell). However, this gives far more information than required for 
most applications. Usually a more appropriate object is a truth-invariant CAD (the truth of a logical 
formula does not vary within cells).

In this paper we generalise to define truth table invariant CADs (the truth values of a list of 
quantifier-free formulae do not vary within cells) and give an algorithm to compute these directly. 
This can be a tool to efficiently produce a truth-invariant CAD for a parent formula (built from the 
input list), or indeed the required object for solving a problem involving the input list. Examples of 
both such uses are provided following the formal definition in Section 1.2. We continue the intro-
duction with some background on CAD, before defining our object of study and introducing some 
examples to demonstrate our ideas which we will return to throughout the paper. We then conclude 
the introduction by clarifying the contributions and plan of this paper.

1.1. Background on CAD

A Tarski formula F (x1, . . . , xn) is a Boolean combination (∧, ∨, ¬, →) of statements about the signs, 
(= 0, > 0, < 0, but therefore �= 0, ≥ 0, ≤ 0 as well), of certain polynomials f i(x1, . . . , xn) with integer 
coefficients. Such statements may involve the universal or existential quantifiers (∀, ∃). We denote by 
QFF a quantifier-free Tarski formula.

Given a quantified Tarski formula

Q k+1xk+1 . . . Q nxn F (x1, . . . , xn) (1)

(where Q i ∈ {∀, ∃} and F is a QFF) the quantifier elimination problem is to produce ψ(x1, . . . , xk), an 
equivalent QFF to (1).

Collins developed CAD as a tool for quantifier elimination over the reals. He proposed to decom-
pose Rn cylindrically such that each cell was sign-invariant for all polynomials f i used to define F . 
Then ψ would be the disjunction of the defining formulae of those cells ci in Rk such that (1) was 
true over the whole of ci , which due to sign-invariance is the same as saying that (1) is true at any 
one sample point of ci .

A complete description of Collins’ original algorithm is given by Arnon et al. (1984a). The first 
phase, projection, applies a projection operator repeatedly to a set of polynomials, each time producing 
another set in one fewer variables. Together these sets contain the projection polynomials. These are 
used in the second phase, lifting, to build the CAD incrementally. First R is decomposed into cells 
which are points and intervals corresponding to the real roots of the univariate polynomials. Then 
R

2 is decomposed by repeating the process over each cell in R using the bivariate polynomials at a 
sample point. Over each cell there are sections (where a polynomial vanishes) and sectors (the regions 
between) which together form a stack. Taking the union of these stacks gives the CAD of R2. This is 
repeated until a CAD of Rn is produced. At each stage the cells are represented by (at least) a sample 
point and an index: a list of integers corresponding to the ordered roots of the projection polynomials 
which locates the cell in the CAD.

To conclude that a CAD produced in this way is sign-invariant we need delineability. A polynomial 
is delineable in a cell if the portion of its zero set in the cell consists of disjoint sections. A set of 
polynomials are delineable in a cell if each is delineable and the sections of different polynomials in 
the cell are either identical or disjoint. The projection operator used must be defined so that over 
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