Periodic continued fractions and elliptic curves over quadratic fields

Mohammad Sadek
Department of Mathematics and Actuarial Science, American University in Cairo, Egypt

A R T I C L E I N F O

Article history:

Received 1 April 2015
Accepted 22 December 2015
Available online 19 January 2016

MSC:

11A55
11 J 70

Keywords:
Elliptic curves
Continued fractions
Quadratic fields

Abstract

Let $f(x)$ be a square free quartic polynomial defined over a quadratic field K such that its leading coefficient is a square. If the continued fraction expansion of $\sqrt{f(x)}$ is periodic, then its period n lies in the set

$$
\begin{aligned}
& \{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,17,18,22, \\
& 26,30,34\} .
\end{aligned}
$$

We write explicitly all such polynomials for which the period n occurs over K but not over \mathbb{Q} and $n \notin\{13,15,17\}$. Moreover we give necessary and sufficient conditions for the existence of such continued fraction expansions with period 13,15 or 17 over K.
© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Let E be an elliptic curve defined over a field K whose characteristic is different from 2, 3. One can describe E using an affine equation of the form $y^{2}=f(x)=a_{0} x^{4}+a_{1} x^{3}+a_{2} x^{2}+a_{3} x+a_{4}$ where $f(x)$ is a square free polynomial whose leading coefficient is a square in K. The affine curve described by the latter equation has a double point at infinity. One considers the projective desingularization which is obtained by gluing the affine curves $y^{2}=f(x)$ and $w^{2}=z^{4} f(1 / z)=a_{4} z^{4}+a_{3} z^{3}+a_{2} z^{2}+a_{1} z+a_{0}$ via $x=1 / z$ and $y=w / z^{2}$. The singularity at infinity on the affine curve $y^{2}=f(x)$ now corresponds to the points ∞^{+}and ∞^{-}given by $(z, w)=\left(1, \sqrt{a_{0}}\right)$ and $\left(1,-\sqrt{a_{0}}\right)$, respectively, on the affine curve $w^{2}=z^{4} f(1 / z)$. One remarks that since a_{0} is a square in K, the points ∞^{+}and ∞^{-}are K-rational points on E.

[^0]In Adams and Razar (1980), the authors were able to prove that the continued fraction expansion of $\sqrt{f(x)}$ is periodic if and only if the point $\infty^{+}-\infty^{-}$is of finite order in $E(K)$. Furthermore it was shown that the period of the continued fraction expansion can be determined once the order of the point $\infty^{+}-\infty^{-}$is known. More precisely, if the order of $\infty^{+}-\infty^{-}$is n then the period of the continued fraction is either $n-1$ or $2(n-1)$ where the second case occurs only if n is even.

The above argument leads one to study elliptic curves with torsion points in order to investigate quartic polynomials $f(x)$ where the continued fraction expansion of $\sqrt{f(x)}$ is periodic. An elliptic curve E with a K-rational torsion point of order n can be written in Tate's normal form; namely, there exist $b, c \in K$ such that E is isomorphic to the following elliptic curve

$$
E_{b, c}: y^{2}+(1-c) x y-b y=x^{3}-b x^{2}
$$

The interested reader may consult (Kubert, 1976) to see how elliptic curves with a nontrivial K-torsion point may be parametrized. In fact the parameters b and c are obtained by considering a transformation that takes the torsion point of order n to $(0,0)$ and moves its tangent to $y=0$. Consequently if $f(x)$ has a square leading coefficient such that the continued fraction expansion of $\sqrt{f(x)}$ is periodic then there exist $b, c \in K$ such that the curve $C: y^{2}=f(x)$ is isomorphic to $E_{b, c}$.

In Van der Poorten (2004), the author wrote explicitly all square free quartic polynomials $f(x)$ over \mathbb{Q} with a square leading coefficient such that $\sqrt{f(x)}$ is periodic. Following Mazur's classification of torsion points of elliptic curves over \mathbb{Q} the possible periods are

$$
\{1,2,3,4,5,6,7,8,9,10,11,14,18,22\} .
$$

In fact it was shown that all of these periods occur over \mathbb{Q} except for 9 and 11 as there is no polynomial over \mathbb{Q} such that the continued fraction expansion of $\sqrt{f(x)}$ is of period 9 or 11 .

In this article we write down all square free quartic polynomials $f(x)$ with a square leading coefficient such that the continued fraction expansion of $\sqrt{f(x)}$ is periodic over some quadratic field K. According to the classification of torsion points of elliptic curves over quadratic fields the possible periods are the ones over \mathbb{Q} together with

$$
\{9,11,12,13,15,17,26,30,34\} .
$$

We prove that the periods 9,11 occur over some quadratic fields. Moreover we display all quartic polynomials that give rise to the periods $12,26,30,34$. In addition we present the quadratic fields with the smallest absolute value of their discriminants over which these periods occur. Finally we give necessary and sufficient conditions for the odd periods $13,15,17$ to occur over a quadratic field K. More precisely we introduce a polynomial $\alpha_{n}(T, S) \in \mathbb{Z}[T, S], n=13,15,17$, such that the period n occurs if and only if there exists a $z \in K$ such that $z^{2}=\alpha_{n}(t, s)$ for some K-rational point (t, s) lying on the modular curve $X_{1}(n+1)$.

One remarks that the modular curve $X_{1}(14)$ is an elliptic curve whereas the curves $X_{1}(16)$ and $X_{1}(18)$ are of genus 2 . The reason why it is computationally difficult to test whether the period $n, n=$ $13,15,17$, is realized over a certain quadratic field K is that one has to produce the set of K-rational points of $X_{1}(n+1)$, then check whether the polynomial $\alpha_{n}(T, S)$ is a K-square when evaluated at one of these K-rational points. The set $X_{1}(14)(K)$ is a finitely generated abelian group while $X_{1}(16)(K)$ and $X_{1}(18)(K)$ are finite sets. Yet there is no known algorithm guaranteed to produce K-rational points on algebraic curves of genus $g \geq 1$ over any quadratic field K.

The organization of this paper is as follows. In section 2 we present the basic background needed to describe periodic continued fraction expansions of square roots of quartic polynomials whose leading coefficient is a square. In section 3 we discuss some of the known results on torsion points of an elliptic curve defined either over the rational field \mathbb{Q} or a quadratic field extension of \mathbb{Q}. In section 4 we parametrize quartic polynomials with square leading coefficients whose square root has a periodic continued fraction expansion. In section 5 we write explicitly quartic polynomials with square leading coefficients such that the square root has a periodic continued fraction expansion over a quadratic extension of \mathbb{Q}.

https://daneshyari.com/en/article/6861227

Download Persian Version:
https://daneshyari.com/article/6861227

Daneshyari.com

[^0]: E-mail address: mmsadek@aucegypt.edu.
 http://dx.doi.org/10.1016/j.jsc.2016.01.003
 0747-7171/© 2016 Elsevier Ltd. All rights reserved.

