

Contents lists available at [ScienceDirect](http://www.ScienceDirect.com/)

Journal of Symbolic Computation

www.elsevier.com/locate/jsc

lournal of Symbolic Computation

A certificate for semidefinite relaxations in computing positive-dimensional real radical ideals

Yue Ma, Chu Wang, Lihong Zhi

Key Lab of Mathematics Mechanization, AMSS, Beijing 100190, China

A R T I C L E IN F O A B S T R A C T

Article history: Received 15 July 2014 Accepted 21 November 2014 Available online 18 December 2014

Keywords: Real radical ideal Positive-dimensional ideal Semidefinite programming Involutive division Pommaret basis *δ*-Regular

For an ideal *I* with a positive-dimensional real variety $V_{\mathbb{R}}(I)$, based on moment relaxations, we study how to compute a Pommaret basis which is simultaneously a Gröbner basis of an ideal *J* generated by the kernel of a truncated moment matrix and satisfying $I \subseteq J \subseteq I(V_{\mathbb{R}}(I))$, $V_{\mathbb{R}}(I) = V_{\mathbb{C}}(J) \cap \mathbb{R}^n$. We provide a certificate consisting of a condition on coranks of moment matrices for terminating the algorithm. For a generic *δ*-regular coordinate system, we prove that the condition is satisfiable in a large enough order of moment relaxations.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Finding real solutions of a polynomial system is a classical mathematical problem with wide applications. Let $I = \langle h_1, \ldots, h_m \rangle \subseteq \mathbb{R}[x] := \mathbb{R}[x_1, \ldots, x_n]$ be an ideal generated by polynomials $h_1, \ldots, h_m \in \mathbb{R}[x]$. Its complex and real algebraic varieties are defined as

$$
V_{\mathbb{C}}(I) := \left\{ x \in \mathbb{C}^n \mid f(x) = 0 \,\forall f \in I \right\}, \qquad V_{\mathbb{R}}(I) := V_{\mathbb{C}}(I) \cap \mathbb{R}^n.
$$

The vanishing ideal of a set $V \subset \mathbb{C}^n$ is an ideal

 $I(V) := \{ f \in \mathbb{C}[x] \mid f(v) = 0, \forall v \in V \}.$

The radical (also called complex radical) of *I* is

<http://dx.doi.org/10.1016/j.jsc.2014.12.002>

E-mail addresses: yma@mmrc.iss.ac.cn (Y. Ma), cwang@mmrc.iss.ac.cn (C. Wang), lzhi@mmrc.iss.ac.cn (L. Zhi).

^{0747-7171/}© 2014 Elsevier Ltd. All rights reserved.

$$
\sqrt{I} := \left\{ f \in \mathbb{C}[x] \mid f^k \in I \text{ for some } k \in \mathbb{N} \right\},\
$$

while the real radical of *I* is defined as

$$
\sqrt[\mathbb{R}]{I}:=\left\{f\in\mathbb{R}[x]\mid f^{2k}+\sum_{i=1}^rq_i^2\in I\text{ for some }k\in\mathbb{N},\ q_1,\ldots,q_r\in\mathbb{R}[x]\right\}.
$$

Clearly, they satisfy the inclusion $I \subseteq \sqrt{I} \subseteq \sqrt[I]{I}$. An ideal *I* is called *radical* (resp. *real radical*) if $I =$ \sqrt{I} (resp. *I* = $\sqrt[8]{I}$). According to the Real Nullstellensatz [\(Bochnak](#page--1-0) et al., 1998), the vanishing ideal *I*(*V*_R*(I)*) of the zero set *V*_R*(I)* is a real radical ideal and $I(V_{\mathbb{R}}(I)) = \sqrt[{\mathbb{R}}{I}$.

There exist numerical algorithms [\(Janovitz-Freireich](#page--1-0) et al., 2012; Lasserre et al., 2009a, 2009b) and symbolic algorithms (Becker and Wörmann, [1996; Gianni](#page--1-0) et al., 1988) for computing the radical ideal of a zero-dimensional ideal *I*. For the general case of *I* being positive-dimensional, a commonly used technique is to reduce the problem to the zero-dimensional case, like in Gianni [et al. \(1988\)](#page--1-0) and [Krick](#page--1-0) and [Logar \(1991\).](#page--1-0)

The problem of computing the real radical ideal $\sqrt[3]{I}$ is typically much more difficult than computing \sqrt{I} . Becker and [Neuhaus \(1993\)](#page--1-0) proposed a symbolic algorithm based on the primary decomposition to compute ₹*I* (see also Neuhaus, [1998; Silke,](#page--1-0) 2007a; Xia and Yang, 2002; [Zeng,](#page--1-0) 1999). Some interesting algorithms based on critical point methods were proposed in [Aubry](#page--1-0) [et al. \(2002\),](#page--1-0) Bank [et al. \(2001\),](#page--1-0) Basu [et al. \(1997\),](#page--1-0) Safey El Din and [Schost \(2003\)](#page--1-0) to compute a point on each semi-algebraically connected component of real algebraic varieties.

A new approach based on moment relaxations has been proposed by Lasserre et al. [\(2013, 2009a,](#page--1-0) [2009b\),](#page--1-0) Laurent and [Rostalski \(2010\)](#page--1-0) for computing $\sqrt[n]{I}$ when *I* has a zero-dimensional real variety. Hereby we briefly describe this interesting approach.

For a sequence $y = (y_\alpha)_{\alpha \in \mathbb{N}^n} \in \mathbb{R}^{\mathbb{N}^n}$, its *moment matrix*

$$
M(y) := (y_{\alpha+\beta})_{\alpha,\beta \in \mathbb{N}^n}
$$

is a real symmetric matrix whose rows and columns are indexed by the set $\mathbb{T}^n := \{x^\alpha \mid \alpha \in \mathbb{N}^n\}$ of monomials. Given a polynomial $h \in \mathbb{R}[x]$, we set vec $(h) := (h_\alpha)_{\alpha \in \mathbb{N}^n}$ and define the sequence $hy := M(y)$ vec(h) $\in \mathbb{R}^{\mathbb{N}^n}$. We say that a polynomial p lies in the kernel of $M(y)$ when $M(y)p :=$ $M(y)$ vec $(p) = 0$. Given a truncated moment sequence $y = (y_\alpha)_{\alpha \in \mathbb{N}_{2t}^n} \in \mathbb{R}^{\mathbb{N}_{2t}^n}$, it defines a *truncated moment matrix*

$$
M_t(y) := (y_{\alpha+\beta})_{\alpha,\beta \in \mathbb{N}_t^n}
$$

indexed by the set $\mathbb{T}_t^n := \{x^\alpha \mid \alpha \in \mathbb{N}_t^n \text{ with } |\alpha| := \sum_{i=1}^n \alpha_i \le t\}.$

We work with the space R[*x*]*^t* of polynomials of the degree smaller than or equal to *t*. For a *polynomial p* ∈ $\mathbb{R}[x]_t$, if $M_t(y)$ vec $(p) = 0$, we say *p* lies in the kernel of $M_t(y)$, i.e.,

$$
\ker M_t(y) := \{ p \in \mathbb{R}[x]_t \mid M_t(y) \, \text{vec}(p) = 0 \}. \tag{1}
$$

Let $I = \langle h_1, \ldots, h_m \rangle \subseteq \mathbb{R}[\chi]$ be an ideal and set

$$
d_j := \left\lceil \deg(h_j)/2 \right\rceil, \qquad d := \max_{1 \le j \le m} d_j. \tag{2}
$$

For $t \geq d$, we define the set

$$
\mathcal{K}_t := \big\{ y \in \mathbb{R}^{\mathbb{N}_{2t}^n} \mid y_0 = 1, M_t(y) \succeq 0, M_{t-d_j}(h_j y) = 0, j = 1, \dots, m \big\}.
$$
 (3)

An element $y \in \mathcal{K}_t$ is *generic* if $M_t(y)$ has maximum rank over \mathcal{K}_t . We denote

$$
\mathcal{K}_t^{\text{gen}} := \{ y \in \mathcal{K}_t \mid \text{rank } M_t(y) \text{ is maximum over } \mathcal{K}_t \}. \tag{4}
$$

When the real algebraic variety $V_{\mathbb{R}}(I)$ is finite, Lasserre [et al. \(2008\)](#page--1-0) used the flat extension (a rank condition of moment matrices in Curto and [Fialkow \(1996\)\)](#page--1-0) as a certificate to check whether polynomials in ker $M_s(y)$ (1 ≤ *s* ≤ *t*) for a generic element $y \in K_t$ generate the real radical ideal $I(V_{\mathbb{R}}(I))$. When $V_{\mathbb{R}}(I)$ is positive-dimensional, this certificate does not work. The following example given by Fialkow (2011, [Example](#page--1-0) 3.2) can be used to explain the difficulty.

Download English Version:

<https://daneshyari.com/en/article/6861229>

Download Persian Version:

<https://daneshyari.com/article/6861229>

[Daneshyari.com](https://daneshyari.com)