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An investigation of the codominance maximum computing time of 
the continued fractions method (CF) for isolation of the real roots 
of a squarefree integral polynomial when applied to the two-para-
meter family of polynomials Aa,n(x) = xn − 2(ax2 − (a + 2)x + 1)2, 
with n ≥ 5 and a ≥ 1. These polynomials have two roots, r1 and r2, 
in the interval (0, 1), with |r1 −r2| < a−n . It is proved that for these 
polynomials the maximum time required by CF to isolate those two 
close roots would be codominant with n5(ln a)2 even if an “ide-
al” root bound were available and either the Horner method or 
the Budan method is used for translations. It is proved that if a 
power-of-two Hong root bound is used by CF to determine transla-
tion amounts then the time required to isolate the two close roots 
is dominated by n6(ln a) if a multiplication-free Budan translation 
method is used. Computations reveal that the Hong root bound is 
surprisingly effective when applied to the transformed polynomi-
als that arise, engendering a minimum efficiency conjecture. It is 
proved that if the conjecture is true then the time to isolate the 
two close roots is dominated by n5(ln a)2. There is also evidence 
for a maximum efficiency conjecture. The two conjectures together, 
if true, make it likely that this time is codominant with n5(ln a)2.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

This paper is a sequel to Collins and Krandick (2012), where it was proved that the computing time 
of the continued fractions positive root isolation method (CF) for the polynomials xn − 2(x2 − 3x + 1)2, 
n ≥ 5, dominates n5. Here we generalize that result, by considering the two-parameter family of 
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polynomials Aa,n(x) = xn − 2(ax2 − (a + 2)x + 1), a ≥ 1 and n ≥ 5. We adopt the notation of Collins 
and Krandick (2012) for polynomial transformations. Specifically, Th(A(x)) = A(x + h), T = T1 and 
R(A(x)) = xn A(1/x) where n = deg(A), and Hd(A(x)) = A(dx). Also r(x) = x−1, th(x) = x +h and t = t1. 
We will use the symbols � and � for dominance, ∼ for codominance, as in Collins (1974). Through-
out the paper a ≥ 1 and n ≥ 5 are implicit hypotheses.

In Section 2 we prove that Aa,n is irreducible, that it has two roots, r1 and r2, in (0, 1), and that 
all other roots are outside of the circle with center at the origin and radius 1. We also prove that r1
and r2 are on opposite sides of r, the root of ax2 + (a + 2)x − 1 in (0, 1), and differ from r by at most 
rn/2+1 < a−n/2−1. Finally we prove that the continued fraction of r is [0, a + 1, a, a, . . .].

In Section 3 we define an infinite sequence of polynomials Ci with C0 = Aa,n , C̃i = R(Ci), C1 =
Ta+1(C̃0) and Ci+1 = Ta(C̃i) for i ≥ 1, only a finite number of which, N , are computed. We show that 
N ≥ � n

4 �.
In Section 4 we define two integer sequences, di and ei , and derive expressions for the coefficients 

of Ci in terms of them. For i ≤ � n
4 � CF also computes T(Ci), and we show, using these expressions, 

that the time CF requires just to perform these translations dominates either n5(ln a) or n5(ln a)2, 
depending on which of three classical translation methods is used.

In Section 5 we use the di and ei sequences to obtain an upper bound on the coefficients of the 
Ci and also to obtain a linear upper bound on N , thereby proving that N is codominant with n.

In Section 6 we express the bounds on the Ci coefficients as functions of a and i and then apply 
the results of Sections 4 and 5 to prove that the time for all T(Ci) translations is codominant with 
n5 ln a.

In Section 7 we analyze the time that would be required to compute each Ci+1 from C̃i if one 
had a fictional “ideal” root bound method that, without cost, delivers the floor function of the least 
positive root of any polynomial. Applied to each C̃i the result would be a. We prove that the time to 
compute Ci+1 = Ta(C̃i) for 0 ≤ i ≤ N is dominated by n5(ln a)2 and is codominant with n5(ln a)2 if the 
translations are performed by either Horner’s method or Budan’s method.

In Section 8 we consider CFHLB, the CF method equipped with a subalgorithm that outputs an 
integer lower bound for the positive roots of any transformed polynomial. Specifically CFHLB utilizes 
the Hong root bound (Hong, 1998), in a power-of-two version. We prove that the computing time 
of CFHLB to isolate the two close roots of the polynomials Aa,n in (0, 1) is dominated by n6(ln a)

provided that multiplication-free Budan translations by powers of two are used and by n6(ln a)2 oth-
erwise.

We exhibit in Section 9 the surprisingly effective performance of the Hong root bound on the 
transformed polynomials that arise and we base on this evidence a minimum efficiency conjecture 
that implies a computing time that is dominated by n5(ln a)2 for CFHLB to isolate the two close roots 
of Aa,n in (0, 1) provided that the multiplication-free Budan translation method is used. We also find 
evidence for a maximum efficiency conjecture. The two conjectures together imply that the number 
of translations needed by CFHLB to compute Ci+1 from C̃i is codominant with ln a.

In Section 10 we discuss several problems left unsolved by this paper.

2. The two close roots

The continued fractions method separately isolates the roots in (0, 1) and the roots in (1, ∞). In 
this section we prove that Aa,n is irreducible, has exactly two roots in (0, 1), and that all its other 
roots are outside of the circle of radius 1 centered at the origin of the complex plane. We prove 
that the two roots in (0, 1), r1 and r2, satisfy r − h < r1 < r < r2 < r + h, where h = rn/2+1 and r
is the root of Ba(x) = ax2 − (a + 2)x + 1 in (0, 1). We also prove that the continued fraction of r is 
[0, a + 1, a, a, a, . . .].

Theorem 1. Let B(x) = ax2 − (a + 2)x + 1. Ba(x) has two positive roots, one in (0, 1) and one in (1, ∞).

Proof. Ba(0) = 1, Ba(1) = −1 and Ba(∞) = ∞. �
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