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A summation framework is developed that enhances Karr’s differ-
ence field approach. It covers not only indefinite nested sums and 
products in terms of transcendental extensions, but it can treat, 
e.g., nested products defined over roots of unity. The theory of 
the so-called R��∗-extensions is supplemented by algorithms that 
support the construction of such difference rings automatically and 
that assist in the task to tackle symbolic summation problems. 
Algorithms are presented that solve parameterized telescoping 
equations, and more generally parameterized first-order difference 
equations, in the given difference ring. As a consequence, one 
obtains algorithms for the summation paradigms of telescoping 
and Zeilberger’s creative telescoping. With this difference ring 
theory one gets a rigorous summation machinery that has been 
applied to numerous challenging problems coming, e.g., from 
combinatorics and particle physics.

© 2015 The Author. Published by Elsevier Ltd. This is an open 
access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In his pioneering work M. Karr (1981, 1985) introduced a very general class of difference fields, 
the so-called ��-fields, in which expressions in terms of indefinite nested sums and products can 
be represented. In particular, he developed an algorithm that decides constructively if for a given 
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expression f (k) represented in a ��-field F there is an expression g(k) represented in the field F
such that the telescoping equation (anti-difference)

f (k) = g(k + 1) − g(k) (1)

holds. If such a solution exists, one obtains for an appropriately chosen a ∈ N the identity

b∑
k=a

f (k) = g(b + 1) − g(a). (2)

His algorithms can be viewed as the discrete version of Risch’s integration algorithm; see Risch (1969), 
Bronstein (1997). In the last years the ��-field theory has been pushed forward. It is now possible 
to obtain sum representations, i.e., right hand sides in (2) with certain optimality criteria such as 
minimal nesting depth (Schneider, 2008, 2010c), minimal number of generators in the summands 
(Schneider, 2004c) or minimal degrees in the denominators (Schneider, 2007b). For the simplification 
of products see Schneider (2005c), Abramov and Petkovšek (2010). We emphasize that exactly such 
refined representations give rise to more efficient telescoping algorithms worked out in Schneider 
(2010b, 2015).

A striking application is that Karr’s algorithm and all the enhanced versions can be used to solve 
the parameterized telescoping problem (Schneider, 2000, 2010a): for given indefinite nested product-
sum expressions f1(k), . . . , fn(k) represented in F, find constants c1, . . . , cn , free of k and not all zero, 
and find g(k) represented in F such that

g(k + 1) − g(k) = c1 f1(k) + · · · + cn fn(k) (3)

holds. In particular, this problem covers Zeilberger’s creative telescoping paradigm (Zeilberger, 1991)
for a bivariate function F (m, k) by setting f i(k) = F (m + i − 1, k) with i ∈ {1, . . . , n} and representing 
these f i(k) in F. Namely, if one finds such a solution, one ends up at the recurrence

g(m,b + 1) − g(m,a) = c1

b∑
k=a

f (m,k) + · · · + cn

b∑
k=a

f (m + n − 1,k).

In a nutshell, one cannot only treat indefinite summation but also definite summation problems. In 
this regard, also recurrence solvers have been developed where the coefficients of the recurrence 
and the inhomogeneous part can be elements from a ��-field (Bronstein, 2000; Schneider, 2005d;
Abramov et al., in preparation). All these algorithms generalize and enhance substantially the 
(q-)hypergeometric and holonomic toolbox (Abramov, 1971; Gosper, 1978; Zeilberger, 1990, 1991; 
Petkovšek, 1992; Paule, 1995; Petkovšek et al., 1996; Paule and Riese, 1997; Bauer and Petkovšek, 
1999; Chyzak, 2000; Kauers and Paule, 2011; Koutschan, 2013) in order to rewrite definite sums to 
indefinite nested sums. For details on these aspects we refer to Schneider (2014).

Besides all these sophisticated developments, e.g., within the summation package Sigma
(Schneider, 2007c), there is one critical gap which concerns all the developed tools in the setting 
of difference fields: Algebraic products, like

(−1)k =
k∏

i=1

(−1), (−1)
(k+1

2

)
=

k∏
i=1

i∏
j=1

(−1), (−1)
(k+2

3

)
=

k∏
i=1

i∏
j=1

j∏
k=1

(−1), . . . (4)

cannot be expressed in ��-fields, which are built by a tower of transcendental field extensions. Even 
worse, the objects given in (4) introduce zero-divisors, like

(1 − (−1)k)(1 + (−1)k) = 0 (5)

which cannot be treated in a field or in an integral domain. In applications these objects occur rather 
frequently as standalone objects or in nested sums (Ablinger et al., 2011, 2013). It is thus a funda-
mental challenge to include such objects in an enhanced summation theory.



Download English Version:

https://daneshyari.com/en/article/6861233

Download Persian Version:

https://daneshyari.com/article/6861233

Daneshyari.com

https://daneshyari.com/en/article/6861233
https://daneshyari.com/article/6861233
https://daneshyari.com

