
Journal of Symbolic Computation 69 (2015) 61–92

Contents lists available at ScienceDirect

Journal of Symbolic Computation

www.elsevier.com/locate/jsc

Synthesis of list algorithms by mechanical 
proving ✩

Isabela Drămnesc a, Tudor Jebelean b

a West University of Timişoara, Romania
b RISC, Johannes Kepler University, Linz, Austria

a r t i c l e i n f o a b s t r a c t

Article history:
Received 7 February 2014
Accepted 25 June 2014
Available online 16 October 2014

Keywords:
List
Algorithm synthesis
Theorema

We address the automation of the processes of algorithm synthesis 
and systematic exploration of the theory of lists. Our focus is on 
methods, techniques, inference rules and strategies for computer 
based synthesis of list algorithms based on proving. Starting from 
the specification of the problem (input and output conditions), 
a synthesis statement is built: “for any list satisfying the input 
condition, there exists a list satisfying the output condition”. The 
main difficulty is to find a constructive proof of this statement, 
from which the corresponding algorithm is easily extracted as a 
set of conditional equalities.
In more detail, we aim at computer automation of the proof of the 
existence of the sorted version of the input list. By using different 
proof methods we automatically synthesize five sorting algorithms:
Selection-Sort, Insertion-Sort, Quick-Sort, Merge-
Sort, and a novel algorithm, which we call Unbalanced-
Merge-Sort, as well as the auxiliary functions used in the 
sorting algorithms. The theory we use is first order, and mostly 
contains formulae which are equivalent to Horn clauses. Therefore, 
except for induction, SLD resolution style inferences are in principle 
sufficient for performing the proofs. However, for most of the 
proofs this leads to a very large search space. Therefore we 
introduce several novel inference rules and specific strategies, 
which are based on the properties of lists, and which we developed 
in the course of this case study on sorting.

✩ The work reported in this article was partially supported by the European Commission grant No. FP7-REGPOT-CT-
2011-284595 (HOST).

E-mail addresses: idramnesc@info.uvt.ro (I. Drămnesc), Tudor.Jebelean@jku.at (T. Jebelean).
URLs: http://web.info.uvt.ro/~idramnesc (I. Drămnesc), http://www.risc.jku.at/home/tjebelea (T. Jebelean).

http://dx.doi.org/10.1016/j.jsc.2014.09.030
0747-7171/© 2014 Published by Elsevier Ltd.

http://dx.doi.org/10.1016/j.jsc.2014.09.030
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jsc
mailto:idramnesc@info.uvt.ro
mailto:Tudor.Jebelean@jku.at
http://web.info.uvt.ro/~idramnesc
http://www.risc.jku.at/home/tjebelea
http://dx.doi.org/10.1016/j.jsc.2014.09.030
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsc.2014.09.030&domain=pdf


62 I. Drămnesc, T. Jebelean / Journal of Symbolic Computation 69 (2015) 61–92

Moreover, during the process of algorithm synthesis we explore the 
theory of lists by introducing (automatically prove, and then use) 
the necessary properties.
When the knowledge base does not contain the auxiliary functions 
needed for the respective version of the algorithm, then the proof 
fails and from this failure a new proof goal is created, which 
is the synthesis statement for the missing auxiliary functions 
(“cascading”).

© 2014 Published by Elsevier Ltd.

1. Introduction

1.1. The problem

The algorithm synthesis problem is: starting from the specification of a problem, given as a pair 
of input and output conditions, how can we automatically discover an algorithm which satisfies the 
specification?

The concern of algorithm synthesis is to develop methods and tools for mechanizing and au-
tomatizing (parts of) the process of finding an algorithm that satisfies a given specification. There 
are several methods for algorithm synthesis, see Basin et al. (2004) where the authors classify the 
synthesis methods into: constructive/deductive synthesis, synthesis by transformation, inductive syn-
thesis and schema based synthesis. Our approach, which we describe in this paper, is in the context 
of constructive synthesis.

Our motivation in choosing this problem is that the user has to describe only what the pro-
gram should do (by giving the specification of the problem) and not how the program should work 
(not writing the code of the program). A constructive proof of the synthesis statement is performed 
and then the corresponding algorithm is extracted from the proof. Although constructive logic already 
gives comprehensive methods for extracting algorithms from proofs, it is still a challenge to actually 
find such proofs for concrete problems and to find proof techniques for these constructive proofs.

1.2. Related work

1.2.1. Synthesis methods
In Basin et al. (2004) the authors compare, by synthesizing a common program, three methods for 

recursive program synthesis, namely constructive/deductive synthesis, schema-based synthesis and 
inductive synthesis. The paper complements the survey of logic program synthesis from Deville and 
Lau (1994) and from Flener (2002).

In the constructive approach, also known as “proofs as programs” (see Constable, 1983; Bates and 
Constable, 1985) a conjecture generated from the problem specification is constructively proved and 
from the proof an algorithm is extracted. For some case studies in constructive synthesis, see Bundy 
et al. (1990), Fribourg (1990), Wiggins et al. (1991). In Howard (1980) the author presents the Curry–
Howard isomorphism in constructive type theory, which in the context of constructive synthesis states 
that there exists a relationship between the constructive proof of an existential theorem and the cor-
responding extracted program.

In Bundy et al. (2006) the authors introduce some techniques for constructing induction rules for 
deductive synthesis proofs. These techniques are based on a combination of “rippling”, see Bundy et 
al. (2005), and “middle-out reasoning”, see Kraan et al. (1993).

As soon as a witness is found in the proof, one can extract the algorithm from proof, see Chiarabini
(2008), Audebaud and Chiarabini (2009). Middle-out reasoning was used in order to synthesize al-
gorithms for natural numbers, for lists. However, the authors point out in Kraan et al. (1996) that 
middle-out reasoning was not successful for the synthesis of sorting algorithms of list partitioning 
algorithms.



Download English Version:

https://daneshyari.com/en/article/6861245

Download Persian Version:

https://daneshyari.com/article/6861245

Daneshyari.com

https://daneshyari.com/en/article/6861245
https://daneshyari.com/article/6861245
https://daneshyari.com

