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A B S T R A C T

We propose a new evolutionary computation approach for solving the multi-objective orienteering problem. This
problem has applications in different fields like routing problems or logistic problems. In our case, the final
motivation is the design of individual tourist routes. The tourists have different priorities about points of in-
terests grouped into categories (for example, cultural or leisure), so, a multi-objective solution system is needed.
In order to obtain the best Pareto solutions, the Artificial Bee Colony algorithm (based on swarm intelligence)
has been adapted to the multi-objective context. The performance of this approach has been compared with two
previous algorithms from the literature for the bi-objective orienteering problem (P-ACO and P-VNS), in
benchmark instances and real-world instances. The results indicate that this new approach is good for solving the
multi-objective orienteering problem.

1. Introduction

There is a huge variety of decision support systems that are used for
different purposes in the companies such as marketing, finances,
manufacturing, logistics or human resources, for example. However, it
is very infrequent that companies provide systems to people which help
them designing a tourist route that fits in their preferences, rather they
offer different preplanned routes with low possibility of customization.
When visitors are planning a stay in a tourist destination, they com-
monly want to visit some locations or Points Of Interests (POIs). These
locations are from cathedrals, historical places or museums to restau-
rants, pubs or theaters. In a destination, there are a lot of POIs, chiefly if
it has an important cultural heritage or a large variety for leisure. As it
is impossible to visit all the places that destinations offer, the visitor
must prioritize which POIs are worth to be visited using budget, time
and interest, and decide what is their order in the route. Hence a de-
cision support system that helps visitors in that process might be very
interesting. Nevertheless the final decision will be made by the visitor,
because this system will offer only the best solutions found that satisfy
the user requirements, but will never consider the emotional part that
biases in the process of planning a visit.

The fact of creating routes that connect POIs can be defined as an
Orienteering Problem (OP) [1]. In this case, our focus is on the Multi-
Objective Orienteering Problem (MOOP), where there are several ca-
tegories for each point of interest (for example, cultural or leisure) and
each of them has distinct benefits for every category. We have

developed a Multi-Objective Artificial Bee Colony (MOABC) algorithm,
based on the single-objective ABC algorithm proposed by Karaboga and
Basturk [2], in order to solve MOOP in a competitive way. This is the
first time that MOABC algorithm is applied to solve multi-objective
orienteering problems and the conclusions obtained are very inter-
esting. As we will see, MOABC results are very competitive when they
are compared with the results obtained by other multi-objective algo-
rithms (P-ACO and P-VNS) from the state-of-the-art in this field. The
experiments have been made in both benchmark instances and real-
world instances (a total of 216 instances grouped in 10 sets), and we
have used three state-of-art performance multi-objective indicators to
report and compare the results. Moreover, the outperformance of
MOABC has been confirmed after a statistical analysis.

This paper is structured as follows. Section 2 introduces the reader
to the work made in this field. Section 3 presents the formal problem
definition and its mathematical formulation. Section 4 describes our
multi-objective approach to solve this problem. Section 5 discusses
about the results obtained and compares the quality metrics of our al-
gorithm with respect to other previously published algorithms, in-
cluding a statistical analysis. Section 6 concludes this paper and sum-
marizes possible future works.

2. Related work

Multi-objective optimization is an important field, with a lot of
activity in the past two decades. Within multi-objective optimization,
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the solving of MOOPs is an area of high applicability. Regrettably, there
is not much research work in this area.

Mainly, there are three different approaches with multiple objective
functions. The first of them implies building a function that combines
the objectives using some kind of weights or thresholds, but the pro-
blem is that these have to be previously defined. The result obtained
with this approach is a solution that fits well with the weighted relation
among objectives given by the fitness function. A second approach is
based on switching among the objectives (criteria) during the selection
phase. Every time a selection is made, potentially a different objective
function (criterion) will be used. The main problem of the objective
(criterion) switching is that the solution population tends to converge to
solutions which are superior in one objective, but poor at others.
Finally, the third alternative is based on including the objectives iso-
lated from each other and calculating the best (that is, Pareto-optimal
or non-dominated) candidate solutions in order to provide the decision-
maker the possibility of exploring all the best trade-off solutions. Here,
we use this third alternative.

In the literature we can find extensions of well-known metaheur-
istics to the multi-objective context: genetic algorithms [3], evolu-
tionary algorithms (see [4]), and some swarm algorithms [5], for ex-
ample. A complete survey on multi-objective evolutionary algorithms
can be found in [6]. In our case, the ABC algorithm has been adapted to
the multi-objective context. We have based our work on the ABC al-
gorithm because it has been widely and successfully studied and ap-
plied to solve real-world problems in multiple fields [7], including
single-objective optimization (e.g. [8–10]) and multi-objective optimi-
zation (e.g. [11–13]).

The orienteering problem was defined by Tsiligirides [1], and some
authors have considered it as a kind of TSP (Traveling Salesman Pro-
blem) with profits (see [14]) or selective TSP. In OP, every vertex has
associated some benefit, and the goal is to visit a group of vertices that
maximize the sum of benefits, while fulfilling the corresponding tour
length/cost constraint. Other related problems are the vehicle routing
problem with profits [15] and the team orienteering problem (see
[16,17]), where the problem is extended to multiple tours. Two com-
plete surveys on orienteering problem can be found in [18,19].

Regarding the multi-objective orienteering problem, the problem
addressed in this paper, very few proposals can be found in the litera-
ture. Within bi-objective orienteering problem we can highlight [20]
that used a P-ACO (Pareto Ant Colony Optimization) algorithm and a P-
VNS (Pareto Variable Neighborhood Search) algorithm combined with
path relinking and [21] that used an evolutionary algorithm also
combined with path relinking.Martí et al. [22] used GRASP combined
with path relinking.

3. Problem definition

The multi-objective orienteering problem can be specified based on
a directed graph =G V A( , ). This directed graph has a set of vertices,

= … +V v v v v{ , , , , },n0 1 2 1 and a set of arcs,
= ∈ ∧ ≠ ∧ ≠ ∧ ≠+A v v v v V v v v v v v{( , ): , }i j i j i j i n j1 0 . Every vertex

∈ ∖ +v V v v{ , }i n0 1 has associated K benefits = …b k K( 1, , )ik . The starting
and ending vertices, v0 and +v ,n 1 do not have benefits associated.
Furthermore, each arc (vi, vj)∈A has a cost cij that can be interpreted as
distance, money or time spent for going from vi to vj.

In all the instances used in this work, v0 and +vn 1 represent the same
point. For this reason, we call a solution as “tour” instead of “path”. The
goal of the multi-objective orienteering problem is to find the best tours
(which maximize the benefits in all the objectives) from v0 to +v ,n 1 while
fulfilling the tour length/cost constraint Cmax .

Therefore, we can mathematically define the problem as:

= …maximize F x f x f x( ) ( ( ), , ( )),K1 (1)
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where yi, a binary variable, has a value equal to 1 when vi is visited, and
else a value of 0. Furthermore, we have to take into account that:
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The binary variable aij has a value equal to 1 when (vi, vj)∈A is
used, and else a value of 0. Eq. (1) indicates that for solving MOOP we
have to maximize the different objective functions. Eq. (2) defines each
objective function as the addition of the corresponding benefits. Eq.
(3),4 imply that for each vertex visited only one arc is ingoing and only
one arc is outgoing. Eq. (5) avoids subtours. Eq. (6) implies that the
starting and ending points are used in all the tours. Eq. (7) guarantees
that the tour cost is not greater than the established limit Cmax . In our
case, we will solve the bi-objective orienteering problem, that is, =K 2.

4. Solution procedure

Golden et al. [23] demonstrated that OP is NP-hard; no polynomial
time algorithm has been designed, or is expected to be designed, to
solve this problem to optimality, and especially when multiple objec-
tives exist.

Therefore, we need to apply a metaheuristic solution technique to
the multi-objective orienteering problem. In this section, we describe
the MOABC algorithm that we have designed and developed. The
single-objective Artificial Bee Colony (ABC) algorithm was originally
proposed by Karaboga and Basturk [2], and we adapt it to the multi-
objective context and the particular solving of MOOP.

We represent every solution to MOOP as a list of points (those in-
cluded in the corresponding tour), which is the most natural way for
representing a solution for this problem.

4.1. Multi-objective optimization

Due to the multi-objective nature of the problem to solve, it is very
difficult to choose exactly an optimal solution where all the objectives
are maximized. Nevertheless, if we restrict to non-dominated solutions
the choice will be bounded to a reasonable amount of candidate solu-
tions. The next definitions help to clear this aspect.

A solution x dominates a solution x′ if x is not worse than x′ in any
of the objective functions, and is better at least in one of the objective
functions. Formally: for = …F x f x f x( ) ( ( ), , ( ))K1 to be maximized, x
dominates x′ if fk(x)≥ fk(x′) for all = …k K1, , , and fk(x)> fk(x′) for at
least one k. If this happens, we write x≻x′.

If no solution dominates the solution x*, we say that x* is non-
dominated or Pareto-efficient. In this case, we say that

= = …z F x f x f x* ( *) ( ( *), , ( *))K1 is a non-dominated vector. The set of all
non-dominated vectors is called non-dominated frontier or Pareto front.
The relation ≻ can be extended from the solution space to the objective
space. In that case, given two vectors = …z z z( , , )K1 and ′ = ′ … ′z z z( , , ),K1
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