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a b s t r a c t 

This paper studies a single machine scheduling problem with periodic maintenance, in which processing 

time and repair time are nondeterministic. In order to deal with nondeterministic phenomena, uncer- 

tainty theory is introduced to minimize the makespan under an uncertain environment. Three uncertain 

programming models are proposed, which can be converted into deterministic forms based on the un- 

certainty inverse distribution. List scheduling (LS) and longest processing time (LPT) algorithms are em- 

ployed to solve the problem. It is proved that the two algorithms have the same worst cast ratio under 

different confidence levels and the LPT algorithm has a better performance bound. A hybrid intelligent 

algorithm for the problem is designed and some numerical experiments demonstrate the effectiveness of 

the proposed models and algorithm. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

In most literatures it is assumed that all machines are avail- 

able at all time. However, in a real manufacturing environment, 

the machines could be unavailable due to many reasons. In or- 

der to improve longevities, performances and efficiency of ma- 

chines, the preventive maintenance is treated as a basic method. 

The machine maintenance is often regarded as an unavailability 

constraint in some literatures. Lee [10] considered various kinds of 

scheduling problems where one of these machines is always avail- 

able and other machines have one unavailable period. Each case 

was discussed separately. He et al. [7] considered a single machine 

scheduling problem with rate-modifying activity and they pro- 

posed a pseudo-polynomial time optimal algorithm for the prob- 

lem. Chen [2] addressed a single machine scheduling problem with 

periodic maintenance where the machine stopped periodically dur- 

ing the rolling horizon, proposing a heuristic algorithm to deal 

with the problem successfully. Ji et al. [8] considered an availabil- 

ity constraint on a single machine scheduling problem with lin- 

ear deteriorating processing time. Tan et al. [22] proved shortest 

processing time algorithm has a worst-case ratio of 3 
2 and 2 re- 

spectively on two parallel identical machines with given unavail- 

able periods. Liu et al. [15] considered two online scheduling prob- 

lems with periodic availability constraint. Zhong et al. [30] stud- 
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ied an order acceptance scheduling model with machine availabil- 

ity constraint and discussed the approximability of the model. Luo 

et al. [17] considered a variable maintenance activity on a sin- 

gle scheduling machine and polynomial time algorithms for dif- 

ferent criteria are proposed. Sbihi and Varnier [20] considered a 

single machine scheduling problem with several maintenance pe- 

riods. Two cases about the maintenance period were investigated 

and an efficient heuristic for these problems was proposed. 

Almost all studies on machine maintenance are assumed to be 

in a deterministic environment. However, human behaviors are in- 

volved in job processing and machine maintenance according to 

the real situation, thus a lot of man-made factors, environmental 

factors and the machine structure have a potential influence on 

scheduling horizon. As it is known, probability theory has been 

widely used to deal with indeterminacy factors for a long time. 

However, it is unreasonable to deal with all indeterminacy factors 

by means of probability theory. The premise of applying probabil- 

ity theory is that the probability distribution is close to the cu- 

mulative frequency. In many scheduling problems, the probability 

distribution is hard to obtain due to lack of accurate data and in 

this case, it is the only way to invite experts to evaluate the be- 

lief degree that an uncertain event will occur and the degree of 

faith depends largely on personal knowledge. In order to deal with 

the involved human uncertainty, uncertainty theory was founded 

by Liu [12] in 2007 and refined it in 2010 [13] . Uncertainty theory 

is a branch of axiomatic mathematics for modeling human uncer- 

tainty, which has been deeply developed in many fields such as 
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uncertain programming [4,9,19,21,23,28,29] , uncertain risk analysis 

[11,16,18] , and uncertain uncertain calculus [3,25–27] . 

In order to understand uncertainty theory better, an example of 

uncertain variables is given. Consider a bridge and its strength. At 

first, we have to admit that no destructive experiment is allowed 

for the bridge. Thus we have no samples about the bridge strength. 

In this case, there do not exist any statistical methods to estimate 

its probability distribution. How do we deal with it? It seems that 

we have no choice but to invite some bridge engineers to evaluate 

the belief degrees about the bridge strength. In fact, it is almost 

impossible for the bridge engineers to give a perfect description 

of the belief degrees of all possible events. Instead, they can only 

provide some subjective judgments about the bridge strength. As a 

simple example, we assume a consultation process is as follows: 

(Q) What do you think is the bridge strength? 

(A) I think the bridge strength is between 80 and 120 tons. 

What belief degrees can we derive from the answer of the 

bridge engineer? First, we may have an inference: 

(i) I am 100% sure that the bridge strength is less than 120 tons. 

This means the belief degree of “the bridge strength being less 

than 120 tons” is 1. Thus we have an expert’ s experimental data 

(120, 1). Furthermore, we may have another inference: 

(ii) I am 100% sure that the bridge strength is greater than 80 

tons. 

This statement gives a belief degree that the bridge strength 

falls into the right side of 80 tons. We need translate it to a state- 

ment about the belief degree that the bridge strength falls into the 

left side of 80 tons: 

(ii’) I am 0% sure that the bridge strength is less than 80 tons. 

Although the statement (ii’) sounds strange to us, it is in- 

deed equivalent to the statement (ii). Thus we have another 

expert’ s experimental data (80, 0). 

Until now we have acquired two expert’ s experimental data 

(80, 0) and (120, 1) about the bridge strength. Could we infer the 

belief degree �( x ) that the bridge strength falls into the left side of 

the point x ? The answer is affirmative. For example, a reasonable 

value is 

�(x ) = 

{ 

0 , if x < 80 

(x − 80) / 40 , if 80 ≤ x ≤ 120 

1 , if x > 120 . 

(1) 

From the function �( x ), we may infer that the belief degree 

of “the bridge strength being less than 90 tons” is 0.25. In other 

words, it is reasonable to infer that “I am 25% sure that the bridge 

strength is less than 90 tons”, or equivalently “I am 75% sure that 

the bridge strength is greater than 90 tons”. 

In this paper, a single machine scheduling problem with peri- 

odic maintenance is studied. Under the affection from many parts, 

it doesn’t seem reasonable to consider all kinds of scheduling 

problems in a deterministic environment, especially for those with 

machine maintenance or fault. In order to grasp the real-time sit- 

uation and make accurate instructions, decision makers are more 

likely to consider more practical factors. Therefore, it is of great 

theoretical significance and practical value to analyze the prob- 

lem in an uncertain environment. The objective is to minimize the 

makespan under this circumstance. Moreover, for small scale prob- 

lems, expected value model, pessimistic value model, and measure 

chance model are proposed. In fact, the proposed models can be 

converted into deterministic forms. Based on prior theoretical anal- 

ysis, an efficient hybrid intelligent algorithm is proposed. 

The rest of the paper is organized as follows. In Section 2 , 

some basic definitions about uncertainty theory are introduced. 

In Section 3 , three models under uncertain environment are 

constructed and the equivalent forms of models are obtained. 

In Section 4 , worst case ratios of LS algorithm and LPT algo- 

rithm for the problem are analyzed. Two practical experiments in 

Section 5 are presented to verify the effectiveness the proposed al- 

gorithms. In Section 6 , a hybrid intelligent algorithm is proposed 

based on the previous theoretical analyses. Numerical experiments 

are implemented to illustrate the validity of the proposed models 

and approach in the Section 7 . 

2. Preliminary 

Uncertainty theory founded by Liu [12] in 2007 and refined by 

Liu [13] in 2010, is a branch of axiomatic mathematics for model- 

ing human uncertainty. Let � be a nonempty set, � a σ -algebra 

over �, and each element � in L is called an event. Uncertain 

measure is defined as a function from L to [0,1]. In detail, Liu 

[12] gave the concept of uncertain measure as follows: 

Definition 1 [12] . Let � be a nonempty set, and L a σ -algebra over 

�. Each element � ∈ L is called an event. A set function M from L 

to [0, 1] is called an uncertain measure if it satisfies the following 

axioms: 

Axiom I. M{ �} = 1 for the universal set �; 

Axiom II. M{ �} + M{ �c } = 1 for any event �; 

Axiom III. M 

{
∞ ⋃ 

i =1 

�i 

}
≤

∞ ∑ 

i =1 

M{ �i } for every countable sequence 

of events �1 , �2 , ���. 

Besides, the product uncertain measure on the product σ - 

algebra L was defined by Liu [14] as follows: as: Let (�k , L k , M k ) 

be uncertainty spaces for k = 1 , 2 , · · · . The product uncertain 

measure M is an uncertain measure satisfying M 

{
∞ ∏ 

i =1 

�k 

}
= 

∞ ∧ 

i =1 
M k { �k } , where �k are arbitrarily chosen events from L k for 

k = 1 , 2 , · · · , respectively. 

Theorem 1 [13] . Uncertain measure M is a monotone increasing set 

function. That is, for any events �1 ⊂�2 , we have 

M{ �1 } ≤ M{ �2 } . 
Theorem 2 [13] . Suppose that M is an uncertain measure. Then for 

any events �1 and �2 , we have 

M{ �1 } + M{ �2 } − 1 ≤ M{ �1 ∩ �2 } ≤ M{ �1 } ∧ M{ �2 } . 
An uncertain variable is a measurable function ξ from an un- 

certainty space (�, L , M ) to the set R of real numbers, i.e., for any 

Borel set B of real numbers, the set { ξ ∈ B } = { γ ∈ | ξ (γ ) ∈ B } is an 

event. The uncertain distribution � of an uncertain variable ξ is 

defined by �(x ) = M{ ξ ≤ x } for any real number x . 

Theorem 3 [14] . Let ξ be an uncertain variable with continuous un- 

certainty distribution �. Then for any real number x, we have 

M{ ξ ≤ x } = �(x ) , M{ ξ ≥ x } = 1 − �(x ) . 

Example 1. Linear uncertain variable ξ ∼ L (a, b) has an uncer- 

tainty distribution 

�(x ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

0 , if x ≤ a 

x − a 

b − a 
, if a ≤ x ≤ b 

1 , if x ≥ b 

where a and b are real numbers with a < b. 
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