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a b s t r a c t 

Vibration signals of faulty rolling element bearings usually exhibit non-linear and non-stationary charac- 

teristics caused by the complex working environment. It is difficult to develop a robust method to detect 

faults in bearings based on signal processing techniques. In this paper, convolutional neural network - 

based hidden Markov models (CNN 

–HMMs) are presented to classify multi-faults in mechanical systems. 

In CNN 

–HMMs, a CNN model is first employed to learn data features automatically from raw vibration 

signals. By utilizing the t-distributed stochastic neighbor embedding (t-SNE) technique, feature visual- 

ization is constructed to manifest the powerful learning ability of CNN. Then, HMMs are employed as a 

strong stability tool to classify faults. Both the benchmark data and experimental data are applied to the 

CNN 

–HMMs. Classification results confirm the superior performance of the present combination model 

by comparing with CNN model alone, support vector machine (SVM) and back propagation (BP) neural 

network. It is shown that the average classification accuracy ratios are 98.125% and 98% for two data 

series with agreeable error rate reductions. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Failure of mechanical components may lead to machine break- 

down, potentially causing economic loss, or even catastrophic re- 

sults. Thus, it is essential to accurately detect incipient and im- 

minent faults in the components of various mechanical structures 

[1,2] . Rolling element bearings are one such type of mechanical 

component. 

Vibration analysis [3–10] is the most commonly used technique 

for rolling element bearing fault diagnosis. Randall et al. [3] ap- 

plied three established techniques to benchmark vibration signals. 

Villa et al. [4] presented a vibration analysis-based method in wind 

turbines fault diagnosis. Feldman et al. [5] reported on the Hilbert 

transform applied to mechanical vibrations. Seshadrinath et al. 

[6] proposed a vibration analysis-based inter-turn fault diagnosis 

method in induction machines. Wavelet-based techniques [7,8] and 

intelligent fault diagnosis [9,10] using vibration signals were ap- 

plied to rolling element bearings and gears respectively. However, 

as a result of the sophisticated working environment, the fault fea- 

tures in the vibration signals are usually obscured, which makes 

fault diagnosis difficult. Therefore, accurate extraction of fault fea- 

tures in mechanical fault diagnosis is a significant accomplishment. 

Time domain features and frequency domain features are some- 
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times not enough for fault diagnosis due to the complexity of 

the signals. Therefore, temporal-frequency methods and adaptive 

analysis methods have been developed, such as enhanced empiri- 

cal mode decomposition [11] , local mean decomposition [12] , PCA 

method [13] , and spectral kurtosis (SK) techniques [14–16] . Nev- 

ertheless, these signal processing techniques suffer from limited 

ability to represent features, and may even reduce original fault 

feature to some extent. 

With the widespread development of intelligent fault diagnosis 

[17–23] , much research is being conducted on mechanical fault di- 

agnosis. Rafiee et al. exploited artificial neural networks to realize 

intelligent condition monitoring of a gearbox [17] . Zhang et al. uti- 

lized a support vector machine-based method for intelligent fault 

diagnosis of rotating machinery [18,19] . Wei et al. achieved intel- 

ligent fault diagnosis via adaptive feature selection [22] . Mean- 

while, deep learning models have also been applied to intelligent 

fault diagnosis by many researchers. Shao et al. [24] applied the 

PSO method to optimize a deep belief network to achieve bear- 

ing fault diagnosis. Ince et al. [25] exploited 1D convolutional neu- 

ral network for real-time motor condition monitoring. Sun et al. 

[26] demonstrated an automatic fault recognition model based on 

convolutional neural networks for multi-fault identification in trou- 

ble of running freight train detection systems (TFDSs). Lee et al. 

[27] performed process fault detection and classification based on 

a convolutional neural network model for semiconductor manu- 

facturing. Wang et al. [28] presented an optimized convolutional 
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neural network for rolling element bearing fault diagnosis. In [29] , 

Janssens et al. pointed out the superior feature-learning ability of 

the CNN model and gave the conclusion that CNN-based methods 

yield great classification results without extensive domain knowl- 

edge. Jing [30] proposed an adaptive multi-sensor data fusion 

method based on convolutional neural networks to detect faults 

in a planetary gearbox. In contrast to the traditional intelligent 

fault diagnosis method, deep learning-based methods that origi- 

nate from artificial neural networks have a deep architecture which 

exhibits brilliant feature learning abilities. Deep learning empha- 

sizes the learning of features layer by layer [31] . The input data to 

a deep model are somewhat prepared at a previous hidden layer 

and then fed into the next hidden layer via feature transformation. 

Each layer has a different expression of the input data, and with 

multiple layers, the last hidden layer can represent the input data 

with certain explicit features. Therefore, deep learning eventually 

achieves feature extraction with constant iteration and abstraction 

processes arranged hierarchically. 

Hidden Markov models (HMMs) have strong ability in dynamic 

time series modeling and pattern recognition [32–34] . Edmondo 

et al. [33] applied artificial neural networks to emission probabil- 

ities estimation within HMMs as a combination model to recog- 

nize speech signals. Volkmar et al. [34] investigated various meth- 

ods of combining classic HMMs with maximum margin HMMs and 

neural networks for offline handwritten test recognition. In re- 

cent decades, many researchers have introduced HMMs into ro- 

tating machinery fault diagnosis [35–37] . Ocak et al. [35] modeled 

the normal bearing state using HMMs and tracked the rolling ele- 

ment bearings states by the HMM probabilities attenuation. Tobon- 

Mejia et al. [36] performed HMM to continuously assess the state 

and estimate the remaining useful life of mechanical components. 

Boutros and Liang [37] applied HMM to detect mechanical faults of 

cutting tools, as well as bearings, which obtained an approximately 

95% fault severity classification accuracy and an approximately 96% 

fault location classification accuracy, respectively. Ocak and Loparo 

[38] proved the high accuracy of an HMM-based fault diagnosis 

scheme for representing various bearing states. 

Based on the strong feature learning ability of CNN models and 

the excellent pattern recognition capacity of HMMs, a convolu- 

tional neural network-based hidden Markov model is proposed to 

identify faults in rolling element bearings. The performance of the 

combination model is investigated with benchmark data from Case 

Western Reserve University (CWRU) and experimental data from 

the Machinery Fault Simulator Magnum. This model takes advan- 

tage of both the CNN and HMMs for their strong ability in data 

feature learning and pattern recognition, respectively. 

The remainder of this paper is set out as follows: descriptions 

of CNNs and HMMs are given in Section 2 . Section 3 gives the de- 

scription for the proposed model. Experimental investigations are 

conducted in Section 4 using two case studies with the proposed 

model. Finally, the conclusion is given in Section 5 . 

2. Theoretical background 

2.1. Brief description of the CNN 

A CNN is a kind of deep learning model with a distinctive ar- 

chitecture, namely a convolutional layer and a subsampling layer. 

There are three main traits of a CNN model, which are, local 

field, subsampling and weight sharing. Lecun and his colleagues 

[39] first proposed a commonly used CNN architecture for hand- 

writing recognition, which now has become a benchmark for deep 

learning models. As shown in Fig. 1 , there exist three main layers 

in the architecture, the input layer, the hidden layers and the out- 

put layer. The hidden layers consist of the convolutional layers and 

subsampling layers. Each convolutional layer is directly followed 

by a subsampling layer. The CNN model was originally designed 

to process 2D maps [40] . For this purpose, we generally call the 

inputs to the input layer “input maps”. Fig. 1 shows only one input 

map in order to simplify the illustration of the CNN model. 

The architecture shown in Fig. 1 is Input ( S 0 )- C 1 - S 1 …- S l -1 –C l - 

S l …C L - S L -Output. When L convolution and subsampling operations 

are performed, the input data will transferred to output data 

through 2 L operations. 

Considering the q -th feature map x 
S l−1 
q ( q = 1,2,…, Q , where Q is 

the number of feature maps in the hidden layer S l -1 ), the general- 

ized feature map x 
C l 
k 

( k = 1,2,…, K , where K is the number of feature 

maps in the hidden layer C l ) can be represented by 

x 
C l 
k 

= f 

( ∑ 

q ∈ M k 

x 
S l−1 
q ∗ w 

C l 
qk 

+ b 
C l 
k 

) 

(1) 

where f ( •) is the output activation function, M k represents a se- 

lection of feature maps in the hidden layer C l , w 

C l 
qk 

is the weight 

matrix of kernel in the hidden layer C l , b 
C l 
k 

is the bias vector in the 

hidden layer C l . 

A subsampling layer produces downsampled versions of the 

feature maps in the hidden layer C l as 

x 
S l 
k 

= f 
(
βS l 

k 
down 

(
x 

C l 
k 

)
+ b 

S l 
k 

)
(2) 

where x 
S l 
k 

( k = 1,2,…, K , where K is the same number as shown in 

Eq. (1) ) is the k -th feature map in the hidden layer S l , β
S l 
k 

is the 

k -th scaling factor in the hidden layer S l , b 
S l 
k 

is the k -th bias in the 

hidden layer S l , and down ( •) represents a subsampling function. It 

points out that Q and K will be changed along with the L th con- 

volution and subsampling operations. 

In general, CNN accomplishes its training process by a feedfor- 

ward pass and a backpropagation pass. In the feedforward pass, 

the outputs of a previous layer are transmitted to the next layer. 

In the backpropagation pass, the training error is propagated back- 

ward hierarchically updating the weights and biases of each layer 

[39] . The training procedures are presented in detail in [41] . 

2.2. Conventional GMM-based HMM model 

An HMM is a statistical model that learns from input data. As a 

generative model, it learns the joint probability p ( input,label ) from 

inputs and corresponding labels. Therefore, classification can be 

achieved by calculating conditional probability p ( label | input ) using 

Bayes’ theorem via maximum likelihood. 

An HMM is a dual stochastic process that contains invisi- 

ble hidden states S = { S 1 , S 2 , · · · , S n , · · · , S N } and observation se- 

quences. The observation sequence O = { O 1 , O 2 , · · · , O t , · · · , O T } in- 

dicates the existence of a same length hidden states sequence of N 

states. Thus, we define an HMM h by 

h = { π, A, B } (3) 

where π represents the prior probabilities, an N-length vector that 

denotes the probability of S n being the first states in a hidden 

states sequence. A is an N × N matrix containing the transition 

probabilities among the hidden states. B represents the emission 

probabilities transferring hidden state S n to observation value O t . 

For a GMM-HMM, B is described by the Gaussian mixture model 

gmm (O ) = 

M ∑ 

m =1 

w m 

· g ( μm , 
∑ 

m ) ( O ) (4) 

where gmm ( •) is the mixture of M Gaussians, g ( μm , 
∑ 

m ) 
(•) is the 

Gaussian probability density function (G-pdf), μm 

, �m 

denote the 
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