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a b s t r a c t 

In evidential clustering, cluster-membership uncertainty is represented by Dempster–Shafer mass func- 

tions. The EVCLUS algorithm is an evidential clustering procedure for dissimilarity data, based on the 

assumption that similar objects should be assigned mass functions with low degree of conflict. CEVCLUS 

is a version of EVCLUS allowing one to use prior information on cluster membership, in the form of 

pairwise must-link and cannot-link constraints. The original CEVCLUS algorithm was shown to have very 

good performances, but it was quite slow and limited to small datasets. In this paper, we introduce a 

much faster and efficient version of CEVCLUS, called k -CEVCLUS, which is both several orders of magni- 

tude faster than EVCLUS and has storage and computational complexity linear in the number of objects, 

making it applicable to large datasets (around 10 4 objects). We also propose a new constraint expansion 

strategy, yielding drastic improvements in clustering results when only a few constraints are given. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Cluster analysis, also called data segmentation, is one of the ba- 

sic tasks in data mining and machine learning. The goal of cluster 

analysis is to segment a collection of objects into clusters in such 

a way that similar objects belong to the same cluster, while dis- 

similar ones are assigned to different clusters. Typically, two data 

types are considered: attribute and dissimilarity data. Dissimilarity 

data, also known as relational data or proximity data, are composed 

of distances, or dissimilarities between objects. Attribute data can 

always be transformed into dissimilarity data by using a suitable 

metric. In this paper, we focus mostly on dissimilarity data. 

Several approaches to clustering have been developed over the 

years. In hard clustering, each object is assigned with full cer- 

tainty to one and only one cluster; the c -means algorithm is 

the reference method in this category. In contrast, “soft” clus- 

tering algorithms [22] are based on different ways of repre- 

senting cluster-membership uncertainty. These include fuzzy [3] , 

possibilistic [14] and rough [17] clustering. Evidential clustering 

[8,9,18,20] is a recent approach to soft clustering, in which uncer- 
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tainty is represented by Dempster–Shafer mass functions [25] . The 

resulting clustering structure is called credal partition . Thanks to 

the generality of Dempster–Shafer theory, evidential clustering can 

be shown to extend all other soft clustering paradigms [7] . Some 

of the recent advances in evidential clustering are briefly summa- 

rized here. The Evidential c -Means (ECM) algorithm [20] is an ex- 

tension of the hard and fuzzy c Means, in which prototypes are de- 

fined not only for clusters, but also for sets of clusters. A cost func- 

tion is minimized in turn with respect to the prototypes, and with 

respect to the credal partition. A version of ECM for dissimilarity 

data, called RECM, was proposed in [21] . In [18] , another variant 

of the ECM algorithm (called CCM) was proposed, based on an al- 

ternative definition of the distance between a vector and the pro- 

totype of a meta-cluster. This modification produces more sensible 

results in situations where the prototype of a meta-cluster is close 

to that of singleton cluster. In [27] , Zhou et al. introduced yet an- 

other variant of ECM, called Median Evidential c -means (MECM), 

which is an evidential counterpart to the median c -means and me- 

dian fuzzy c -means algorithms. An advantage of this approach is 

that it does not require the dissimilarities between objects to ver- 

ify the axioms of distances. Denœux et al. [8] proposed another ev- 

idential clustering method, called E k -NNclus, which is based on ev- 

idential k -nearest neighbor rule [5] . Evidential clustering has been 

successfully applied in various fields, including machine progno- 

sis [24] , medical image processing [15,16,19] and analysis of social 

networks [27] . 
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The notion of credal partition was first introduced in [9] , to- 

gether with the first evidential clustering algorithm, called EVCLUS. 

The EVCLUS algorithm is similar in spirit to multidimensional scal- 

ing procedures [4] . It attempts to build a credal partition such 

that the plausibility of two objects belonging to the same clus- 

ter is higher when the two objects are more similar. This result is 

achieved by minimizing a stress, or cost function using a gradient- 

based optimization procedure. A constrained version of EVCLUS al- 

lowing for the utilization of prior knowledge about the joint clus- 

ter membership of object pairs was later proposed in [1] under 

the name CEVCLUS. In the CEVCLUS method, pairwise constraints 

are formalized in the belief function framework and translated as 

a penalty term added to the stress function of EVCLUS. 

Both EVCLUS and CEVCLUS were shown to outperform state-of- 

the-art clustering procedures [1,9] . However, their high space and 

time complexity restricted their application to small datasets with 

only a few hundred objects. Recently, a new version of EVCLUS, 

called k -EVCLUS, has been proposed [10] . k -EVCLUS is based on an 

iterative row-wise quadratic programming (IRQP) algorithm, which 

makes it much faster than EVCLUS. It also uses only a random sam- 

ple of the dissimilarities, which reduces the time and space com- 

plexity from quadratic to linear, making it suitable to cluster large 

datasets. 

In this paper, we carry out similar improvements to the CEV- 

CLUS algorithm. We show that the cost function composed of 

a stress term and a penalty term encoding pairwise constraints 

can also be minimized using the IRQP algorithm, which is sev- 

eral orders of magnitude faster than the gradient-based procedure 

used in [1] . Together with dissimilarity sampling, this modification 

makes the new version of CEVCLUS (called k -CEVCLUS) applicable 

to large datasets composed of tens of thousands of objects with 

pairwise constraints. We also introduce a new constraint expansion 

strategy, which brings considerable improvements in clustering re- 

sults when only a few constraints are provided. Altogether, the 

contributions reported in this paper considerably extend the appli- 

cability of constrained evidential clustering to real-world datasets 

of realistic size. 

The rest of this paper is organized as follows. Basic notions 

on belief functions and credal partitions, as well as the k -EVCLUS 

and CEVCLUS algorithms are first recalled in Section 2 . The new 

k -CEVCLUS algorithm and the constraint expansion procedure are 

then described in Section 3.1 , and experimental results are re- 

ported in Section 4 . Finally, Section 5 concludes the paper. 

2. Background 

The purpose of this section is to provide the reader with back- 

ground information so as to make the paper self-contained. Basic 

notions of Dempster–Shafer theory are first recalled in Section 2.1 , 

and the concept of credal partition is introduced in Section 2.2 . 

The k -EVCLUS and CEVCLUS algorithms are then presented in 

Sections 2.3 and 2.4 , respectively. 

2.1. Mass functions 

Let � = { ω 1 , . . . , ω c } be a finite set. A mass function on � is a 

mapping from the power set 2 � to [0, 1], satisfying the condition 

∑ 

A ⊆�

m (A ) = 1 . (1) 

Each subset A of � such that m ( A ) > 0 is called a focal set . In 

Dempster–Shafer theory, a mass function encodes a piece of evi- 

dence about some question of interest, for which the true answer 

is assumed to be an element of �. For any nonempty focal set A, 

m ( A ) is a measure of the belief that is committed exactly to A [25] . 

The mass m ( ∅ ) assigned to the empty set has a special interpreta- 

tion: it is a measure of the belief that the true answer might not 

belong to �. As we will see, this quantity is very useful in cluster- 

ing to identify outliers. A mass function is said to be 

• Bayesian if all its focal sets are singletons; 

• Logical if it has only one focal set; 

• Certain if it is both logical and Bayesian; 

• Consonant if its focal sets are nested. 

Given a mass function m , the corresponding belief and plausibil- 

ity functions are defined, respectively, as 

Bel(A ) = 

∑ 

∅� = B ⊆A 

m (B ) 

and 

P l(A ) = 

∑ 

B ∩ A � = ∅ 
m (B ) , 

for all A ⊆�. The quantity Bel ( A ) represents the degree of total sup- 

port in A , while Pl ( A ) can be interpreted as the degree to which 

the evidence is consistent with A . 

The degree of conflict [25] between these two mass functions m 1 

and m 2 defined on the same frame � is 

κ = 

∑ 

A ∩ B = ∅ 
m 1 (A ) m 2 (B ) . (2) 

If m 1 and m 2 are mass functions representing evidence about two 

distinct questions with the same set of possible answers �, then 

the plausibility that the two questions have the same answer is 

equal to 1 − κ [9] . 

2.2. Credal partition 

Let O = { o 1 , . . . , o n } be a set of n objets. We assume that each 

object belongs to at most one of c clusters. The set of clusters is 

denoted by � = { ω 1 , . . . , ω c } . In evidential clustering, the uncer- 

tainty about the cluster membership of each object o i is repre- 

sented by a mass function m i on �. The n -tuple M = (m 1 , . . . , m n ) 

is called a credal partition . The notion of credal partition is very 

general and it encompasses most other types of soft clustering 

structures [7] . In particular, 

• If all mass functions m i are certain, then we have a hard parti- 

tion, where object o i is assigned to cluster ω k if m i ({ ω k } ) = 1 . 

• If all mass functions m i are Bayesian, then the evidential par- 

tition is equivalent to a fuzzy partition; the degree of mem- 

bership of object o i to cluster ω k is then u ik = m i ({ ω k } ) , for 

i ∈ { 1 , . . . , n } and k ∈ { 1 , . . . , c} . 
• If all mass functions m i are logical with a single focal set A i ⊆�, 

then we get a rough partition. The lower and upper approxi- 

mations of cluster k can be defined, respectively, as ω k = { o i ∈ 

O| A i = { ω k }} and ω k = { o i ∈ O| ω k ∈ A i } . 
• If each m i is consonant, then it is equivalent to a possibility 

distribution, and it can be uniquely represented by the plau- 

sibility of the singletons pl ik = P l i ({ ω k } ) for i ∈ { 1 , . . . , n } and 

k ∈ { 1 , . . . , c} . Each number pl ik is the plausibility that object i 

belongs to cluster k ; these numbers form a possibilistic parti- 

tion of the n objects. 

Because a credal partition is more general than other types of 

hard or soft partitions, it can be converted into any other type [7] . 

For instance, we obtain a fuzzy partition by defining the degree of 

membership u ik of object o i to cluster ω k as 

u ik = 

pl ik ∑ c 
� =1 pl i� 

. (3) 

This fuzzy partition can then be converted to a hard partition by 

assigning each object to the cluster with the highest membership 

degree. 

Please cite this article as: F. Li et al., k -CEVCLUS: Constrained evidential clustering of large dissimilarity data, Knowledge-Based Systems 

(2017), https://doi.org/10.1016/j.knosys.2017.11.023 

https://doi.org/10.1016/j.knosys.2017.11.023


Download English Version:

https://daneshyari.com/en/article/6861849

Download Persian Version:

https://daneshyari.com/article/6861849

Daneshyari.com

https://daneshyari.com/en/article/6861849
https://daneshyari.com/article/6861849
https://daneshyari.com

