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The maximum set k-covering problem (MKCP) consists in selecting a subset of k columns from a given set
of n columns, in such a way that the number of rows covered by the selected columns is maximized. The
problem is NP-hard and has lots of applications. In this paper, we propose an adaptive particle swarm
optimization for solving the maximum set k-covering problem. The proposed algorithm uses a greedy
constructive procedure to generate an initial swarm with good quality solutions. Based on the charac-
teristic of the MKCP, an iterative local search procedure is developed to enhance the solution quality.
Furthermore, a position updating procedure and a mutation procedure with adaptive mutation strength
are employed to guide the search to a more promising area. These strategies achieve a good tradeoff
between exploitation and exploration. Extensive evaluations on a set of benchmark instances show that
the proposed algorithm performs significantly better than the existing heuristic for MKCP. In particular,
it yields improved lower bounds for 96 out of 150 instances, and attains the previous best known results
for remaining 54 instances. The key features of the proposed algorithm are analyzed to shed light on

their influences on the performance of the proposed algorithm.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The minimum set covering problem (MSCP) is one of the
most widely studied NP-hard combinatorial optimization problems.
Given m rows and n columns, and an (m x n) sparse matrix of zero-
one elements a;, where a;; =1, if row i is covered by column j,
and g;; = 0, otherwise. The MSCP seeks to cover the rows using
the minimum number of columns. The maximum set k-covering
problem (MKCP) is to identify a subset S of a given cardinality k
from n columns, such that the number of the rows covered by S is
maximized. MKCP is seen as a generalized version of MSCP.

The MKCP is known to be NP-hard [1], and has lots of indus-
trial engineering applications, such as the maximum covering loca-
tion problem [2], crew scheduling in railway [3], cloud computing
[4-6], multi-depot train diver scheduling [7], clustering [8], wire-
less sensor networks [9], etc.

Due to the computational complexity of MSCP, exact algo-
rithm is not practical for large scale instances. For this reason, re-
searchers make a lot of efforts on developing heuristics for obtain-
ing good quality solutions. Many different kinds of heuristics have
been proposed for solving MSCP, such as particle swarm optimiza-
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tion [10], ant colony optimization [11], tabu search [12], etc. How-
ever, these techniques can not be applied to solve MKCP directly.
Two swapping-based one-pass streaming algorithm [13,14] and a
greedy-based one-pass streaming algorithm (GOPS) [15] were pro-
posed for solving the MKCP. To the best of our knowledge, there
is only one stochastic heuristic [18], which is a restart local search
algorithm (RNKC), to MKCP in the literature. Due to the compu-
tational challenge and application capability of MKCP, it is worth-
while to develop more heuristics for solving MKCP.

Particle swarm optimization (PSO) [19] is a relatively new evo-
lutionary algorithm. It has been applied to lots of optimization
problems, such as bi-level pricing problem [20], minimum labelling
steiner tree problem, energy management, power economic dis-
patch problem, etc. The conventional PSO (CPSO) was originally
developed for solving continuous optimization problem. Aiming to
deal with discrete problems, Kennedy and Ebehert firstly proposed
a discrete PSO (DPSO) [21]. After that, DPSO has been success-
fully applied to lots of different optimization problems [10,22-26].
Binary PSO (BPSO) is easy to implement and has been demon-
strated strong efficacy in solving NP-hard optimization problems.
All these successful applications for solving the challenging opti-
mization problems motivate us to develop the employment of the
BPSO to deal with the MKCP.
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The MKCP can be formulated as constrained binary program-
ming problem. When applied to MKCP, there are three main issues
that may affect the performance of BPSO. The first is the constraint
handing technique used in BPSO. The main challenge in application
of BPSO to the constrained combinatorial optimization problem is
optimizing the objective function while ensuring nonviolation of
the constraints [27]. Most particle position updating methods of
BPSOs to unconstrained binary optimization problems are blind to
constraints. As a consequence, the new positions (solutions) gener-
ated by these techniques may be infeasible. The second is the ef-
fectiveness of the local search procedure. Local search procedure is
often employed as an intensification strategy in evolutionary algo-
rithms. Most of solution time of an evolutionary algorithm is usu-
ally spent on local search [28,29]. The third is a good balance be-
tween exploitation and exploration. Various exploration strategies
[30-32] have been proposed to diversify the search.

In this paper, we take the characteristic of the MKCP to pro-
pose an adaptive binary particle swarm optimization (ABPSO) for
obtaining high quality solutions in a short time. Three main con-
tributions are made in this paper to efficiently solve the MKCP.

First, a new position updating rule is developed to generate
new feasible solutions. It is commonly accepted that the degree of
similarity between high quality solutions is generally very large for
combinatorial optimization problems. The proposed position up-
dating rule guides the search close to the previous found local
optima (the personal best positions and the global best position).
Moreover, to diversify the search, a particle is allowed to move
close to other personal best positions.

Second, we present a modification of the Fiduccia-Mattheyses
algorithm (FM) [33] for graph partitioning as local search proce-
dure (denoted by MKCFM) to intensify the search. Based on the
characteristic of the MKCP, the MKCFM uses two consecutive op-
erators (removing operator and adding operator) to guarantee the
search within the feasible region. It can find good solutions of
MKCP quickly.

Third, the ABPSO employs an adaptive mutation operator to
guide the search to a promising area. Each particle in the swarm
is associated with a mutation strength variable. These variables are
adjusted through self-adaption.

To assess the performance of the proposed algorithm in terms
of both solution quality and solution time, we provide experimen-
tal results on a total of 150 benchmark instances from the litera-
ture, showing that the proposed algorithm can obtain high quality
solutions in a short computing time. Moreover, it is able to find
new improved solutions for 96 out of 150 instances, and attain the
previous best known solutions for the other 54 instances.

The paper is organized as follows. Section 2 presents the prob-
lem description of the MKCP, and briefly introduces the existing
algorithms. The proposed algorithm ABPSO is described in details
in Section 3. Section 4 is dedicated to the computational results,
and investigates two important features of the proposed algorithm.
Concluding remarks are given in Section 5.

2. Mathematical model and related work
2.1. Problem formulation and notations

The MKCP can be formally defined as follows. Let M=
{1,---,m} and N={1,---,n} be the row set and column set, re-
spectively. Let A = (a;;) be an m-row, n-column, zero-one matrix.
We say that a column j covers a row i if a;; = 1. The MKCP con-
sists in selecting a subset SCN of cardinality k (hence |S| = k), such
that the number of rows covered by S is maximized.

Let x; =1 for column jeS and x; = 0 for column j e N —S. The
time of row i covered by S can be represented by

C = 2?:](1,‘]‘)(]‘. (])

We use «o;€{0, 1} to record whether the row i is covered by S.
More formally,

1 if ¢>1,
o = 0

otherwise,
and row i is covered by S if o; = 1. The MKCP can be formulated
through a constrained 0-1 programming as follows:

max  f(x)=Y e
i=1

n
st. Y xj=k
=1

x e {0, 1}

Let [;c M and J; be the set of rows covered by column j, and
the set of columns that are able to cover row i, respectively. More
formally,

Ij={iEM:aij=1},_]i={jEN:aij=1}.
We say column j; is adjacent to column j, if there exists a row
ieM which is covered by columns j; and j,, i.e., there exists a row

i such that j; €J; and j; €. Let AD; be the set of columns which
are adjacent to column j.

2.2. Previous work

The MKCP has been proved to be NP-hard. It can be approx-
imated by an easy randomized method to under (1 — %) ~ 0.632
[15,18]. The guaranteed approximation ratios of existing approxi-
mation algorithms to MKCP are not satisfied for the good perfor-
mance in recent applications.

In 2013, Yu and Yuan proposed a greedy-based one-pass
streaming algorithm (GOPS) for solving the MKCP. Let C be a col-
lection of checked columns. The GOPS started with C =g, and
compared every column j to the columns in C. More formally, let
Uj={t: k] > %,[EC}, and L = {t: || < “‘%l,teC}, where 8>0
is a parameter. Then, the GOPS deleted the rows covered by the
column j which are also covered by the columns in U;. Afterwards,
if the number of rows covered by the column j remains at least

‘%l, GOPS added the column j into C. Otherwise, as the number of

rows covered by the column j decreases, GOPS updated U; and kept
on comparing the column j with the new Uj, until either the col-
umn j is added, or it was empty and discarded. If the column j is
added into C, GOPS updated L; by deleting all rows covered by the
columns in L; which are also covered by the column j. The GOPS
executed by calling the above process to every column in a stream.

The GOPS is able to produce a prefix-optimal ordering of
columns. Since the GOPS executed only one pass through the en-
tire dataset, it is very fast. However, the solution quality produced
by GOPS remains to be improved.

Heuristic algorithm has been shown to be an effective way to
solve NP-hard optimization problems [16,17]. Recently, Wang et al.
proposed a restart local search algorithm (RNKC) [18] for solving
the MKCP. RNKC designed an initialization procedure to produce
an initial solution. Then, a local search procedure was proposed to
improve the initial solution. The above process was repeated until
the predefined time limit is satisfied. Comprehensive results on a
set of classical instances showed that RNKC competes very favor-
ably with CPLEX.

3. The proposed algorithm ABPSO

In this section, we present the ABPSO algorithm to the MKCP.
Firstly, we give the general framework of the proposed ABPSO.
Then, several main components of ABPSO are described in detail.
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