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a b s t r a c t 

It is critical for advanced manufacturing machines to autonomously execute a task by following an end- 

user’s natural language (NL) instructions. However, NL instructions are usually ambiguous and abstract so 

that the machines may misunderstand and incorrectly execute the task. To address this NL-based human- 

machine communication problem and enable the machines to appropriately execute tasks by following 

the end-user’s NL instructions, we developed a Machine-Executable-Plan-Generation (exePlan) method. 

The exePlan method conducts task-centered semantic analysis to extract task-related information from 

ambiguous NL instructions. In addition, the method specifies machine execution parameters to generate 

a machine-executable plan by interpreting abstract NL instructions. To evaluate the exePlan method, an 

industrial robot Baxter was instructed by NL to perform three types of industrial tasks {“drill a hole”, 

“clean a spot”, “install a screw”}. The experiment results proved that the exePlan method was effective in 

generating machine-executable plans from the end-user’s NL instructions. Such a method has the promise 

to endow a machine with the ability of NL-instructed task execution. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Human-machine collaborative manufacturing combines human 

intelligence on high-level task planning and the robot physical 

capability (e.g., precision and speed) on low-level task execution 

[1] . Toward this direction, intuitive and natural communication be- 

tween the human and the machine has been an active research 

area in the last decade with the goal to enable seamless human- 

machine cooperation [2,3] . Natural-Language-instructed human- 

machine interaction is expected to enable an advanced manufac- 

turing machine, such as a Computer Numerical Control machine 

or an industrial robot, to autonomously perform tasks such as 

rough/fine finishing [4,5] , assembly [2,6] and packaging [7,8] ac- 

cording to the end-user’s NL instructions, which are given based 

on the user’s judgement of the task progress and environmental 

situations. Compared with other input methods, including human 

hand force [9,10] , hand gesture [11,12] , and body motions [13–16] , 

the NL instruction method has two main advantages. First, NL in- 

struction provides a natural, human-like, face-to-face communica- 

tion manner. Non-expert users without prior programming training 

could command a machine to perform their desired tasks [17,18] . 

Second, the inherent linguistic structure of NL, as a predefined in- 

formation encoder, provides a standard, informative data source 
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to generate structured machine language [19,20] . In contrast, the 

aforementioned existing methods require extra translations among 

discrepant data patterns. These two advantages make NL a superior 

means for the end-user to naturally and efficiently communicate 

with manufacturing machines. 

Currently, typical industrial applications involving NL include 

NL-based control in which the working statuses such as “on/off”

and “quickly/slowly” are selected orally to control a machine in 

navigation [3,21] , NL-based task execution in which the task op- 

eration methods such as “goTo + Location; then drop + object” is 

described orally to help a machine with object finding/placing 

[22,23] , and NL-based execution personalization in which human’s 

preferences and moods in oral dialogs were considered to adjust a 

machine’s execution manners [24,25] . 

However, there is still a long way to apply NL-instructed ma- 

chines in practical manufacturing applications. First, NL is vari- 

able and ambiguous. NL is usually polysemous, homophonic and 

expression-manner diverse so that the same meaning could be 

expressed in various ways, and different meanings could be ex- 

pressed in similar ways [8,26] . For example, “drill a hole” could 

be expressed as “bore one hole”, “drilling one bore”, “create an 

unthreaded hole”, and so on [27] . In addition, humans usually 

use referring, outlining, and omitting in NL instructions [22,28] . 

For example, in an instruction “at the center point”, information 

such as “which object in which place has the center point” cannot 

be known merely from a word ‘the’ [27] . It is challenging to ex- 
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tract task-related information such as task goals and detailed ex- 

ecution procedures from NL instructions. Second, human instruc- 

tion is abstract [23,29] . Even when a complete execution procedure 

for a task is instructed, the generated plan is still non-executable 

for a machine. For example, the abstract instructions ‘clean the 

surface’ are still machine-non-executable for that the execution- 

related specific knowledge such as “tool: brush; action: move- 

Down → sweep → moveUp; …” is missing [27] . In addition to 

specific-knowledge missing, a reasonable and flexible knowledge 

structure, which is implicitly embedded in NL descriptions to guide 

correct task execution, is difficult to extract [30–32] . By obeying 

the human instructions, one task could be flexibly executed by sev- 

eral methods, which were formulated according to an individual’s 

cognitive logics [33,34] . However, usually these cognitive logics in 

NL instructions are difficult to understand as to a machine, for 

that literal information directly extracted from NL instructions is 

insufficient to explain the logics [2,35] . Taking the task “deliver a 

drink” as an example, the potential methods could either be “fetch 

a cup + fill the cup with water + place it on table” or “place a cup 

on the table + fill cup with water”. The logics such as { CupAvailabil- 

ity(yes) ^ WaterAvailability(yes) → CupBeingFilledFeasibility(yes) } be- 

hind the task executions have not been described explicitly in NL 

instruction while these logics are important in deciding what kind 

of procedures are feasible and reasonable in execution and in as- 

sessing whether a task could be executable or not. It is challenging 

for a machine to perform a task without knowing the task-related 

logics. 

To address these problems and enable NL-instructed manu- 

facturing in practical industrial tasks, we developed a machine- 

executable-plan-generation (exePlan) method to “translate” the 

ambiguous and abstract NL instructions into machine-executable 

plans. In this paper, we mainly have two contributions, shown as 

follows. 

• A task-centered semantic analysis method is developed for pro- 

cessing ambiguous NL instructions into task-related information 

including task goal, sub-goals, and execution logic relations. In- 

stead of using basic linguistic features such as keywords/Part- 

of-Speech(PoS), the task-related semantic features, such as ac- 

tions/tools/execution logics were considered to extract the task- 

related information from ambiguous NL instructions. 
• A machine-execution-specification method is developed for in- 

terpreting abstract human instructions into machine-executable 

plans. With this method, each abstract sub-goal in the NL in- 

struction is firstly specified into an executable sub-goal by 

adding the machine-execution specification (MES) parameters 

such as location, action, and human requirements. Then a 

machine-executable plan is specified by exploring the weighted 

logic relations among the task-related execution procedures. 

Different from the first-order logic in which all the logic rela- 

tions are inviolable and plans using first-order logic have bi- 

nary executability {executable, non-executable}, weighted logic 

relations could be violable with a corresponding weighted de- 

crease of plan executability and the plans using weighted logics 

have a range of acceptable executability. A plan is flexibly made 

by organizing reasonable logic procedures with the executabil- 

ity greater than a threshold value. 

2. Related work 

To disambiguate NL instructions in task execution, special 

grammars were designed to identify the task-related entities based 

on specific keyword involvements and their PoS tags. For example, 

in the sentence “bring the can in the trash bin” the task goal “in 

the trash bin” was extracted based on the keywords “bring, can”

and their corresponding PoS tags “VB, NN’ [8] . Ontology relations 

among the interested entities were used for mutual disambigua- 

tion. For example, to describe a cup, the description was likely to 

be “container with handle attached”. “Attached” was the constraint 

relation between the object “container” and object part “handle”

[36,37] . When an entity was ambiguously mentioned, the ambigu- 

ous entity could be explained by mutually co-referring. Take sen- 

tences “Go to the second crate on the right. Pick it up” for an ex- 

ample, with co-reference resolution the uncertain expression “it”

was identified as “the second crate on the right” [22,38] . When 

the NL descriptions such as “pick up the pallet” were too ambigu- 

ous for a robot, a query such as “which pallet?” was launched to 

ask the human for disambiguation [2,39] . By exploring the features 

such as perceivable properties “cylindrical” and “round”, the am- 

biguous descriptions “cylindrical container with a round handle at- 

tached on one side” for the object “container” was understood [36] . 

By exploring the spatial relations “behind” in NL descriptions “Nav- 

igate to the building behind the pole”, named entities “building, 

pole” were identified in the real world [40,41] . To disambiguate 

the NL instructions, these methods explored context evidences for 

a single entity. Evidences include semantic relations, human expla- 

nations, and spatial constrains. However, these methods only fo- 

cused on using one single type of evidences such as basic linguis- 

tic feature keywords/PoS or semantic features co-referring and per- 

ceivable properties, without combining the multiple types of fea- 

tures together to perform a comprehensive semantic analysis. In 

addition, these methods aimed to identify an entity such as “can”

or “trash bin” separately without considering entity correlations 

such as “can—trash bin”, which are informative in instruction dis- 

ambiguation. The above mentioned features are important for se- 

mantic analysis, however have not been well investigated. 

To interpret abstract expressions in NL instructions, motion 

grammars were first designed for establishing the word-action cor- 

relations such as word “grasp” — action “Grasp” [3,21,23] . Real- 

world preconditions such as “stay in the kitchen” were defined for 

triggering specific types of executions such as “visiting the kitchen”

[17] . The NL descriptions were marked by landmark objects such as 

“staircase, box” in the real world to enable the execution of tasks 

such as “reach in a spot” [42,43] . With these methods, abstract NL 

descriptions are interpreted into executable commands to some ex- 

tent. However these methods do not make the NL command truly 

machine-executable for that the critical execution parameters, in- 

cluding the tool usage, real-world precondition, action sequence, 

and human requirements, are still missing or insufficient for sup- 

porting a robot’s executions in practical situations. 

To interpret implicit cognitive logics embedded in NL instruc- 

tions, probabilistic graphical models were designed to explore the 

knowledge importance with the consideration of its probability 

distributions for plan making. For example, in the NL descriptions 

“go to the second crate on the right. Pick it up.”, the procedures 

could be modeled as {goTo create ( p = .50), PickUp crate ( p = .50)} 

[22,43] . In the study of human-speech-instructed indoor naviga- 

tion [46,47] , a semantic topological model was developed to ex- 

plore the internal logic correlations of sub-steps in a reasonable 

task-execution plan. For example, in the path “first go to the hall- 

way; the cafeteria is down the hallway” the hallway could be re- 

placed by “hall, corridor, walkway” and the “cafeteria” could be 

replaced by “dining hall” according to the semantic topology. The 

procedures with any combinations of the elements in the topol- 

ogy structure were considered as reasonable task execution plans. 

However, these plans are not truly executable for a machine. Prob- 

abilistic graphical models merely describe the importance of the 

sub-steps in a plan, ignoring their internal logics without which 

a plan is non-executable in the real world. On the other hand, 

topological models describe the logic relations among procedures; 

however, the logic constrains are hard without discriminative de- 

scriptions of the involved logic relations. If one hard logic relation 
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