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a b s t r a c t 

A Siamese Deep Forest (SDF) is proposed in the paper. It is based on the Deep Forest or gcForest proposed 

by Zhou and Feng and can be viewed as a gcForest modification. It can be also regarded as an alternative 

to the well-known Siamese neural networks. The SDF uses a modified training set consisting of concate- 

nated pairs of vectors. Moreover, it defines the class distributions in the deep forest as the weighted sum 

of the tree class probabilities such that the weights are determined in order to reduce distances between 

similar pairs and to increase them between dissimilar points. We show that the weights can be obtained 

by solving a quadratic optimization problem. The SDF aims to prevent overfitting which takes place in 

neural networks when only limited training data are available. The numerical experiments illustrate the 

proposed distance metric method. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

One of the important machine learning tasks is to compare 

pairs of objects, for example, pairs of images, pairs of data vectors, 

etc. There are a lot of approaches for solving the task. One of the 

approaches is based on computing a corresponding pairwise met- 

ric function which measures a distance between data vectors or a 

similarity between the vectors. This approach is called the metric 

learning [2,17,30] . It is pointed out by Bellet et al. [2] in their 

review paper that the metric learning aims to adapt the pairwise 

real-valued metric function, for example, the Mahalanobis distance 

or the Euclidean distance, to a problem of interest using the 

information provided by training data. A detailed description of 

the metric learning approaches is also represented by Le Capitaine 

[6] and by Kulis [17] . The basic idea underlying the metric learning 

solution is that the distance between similar objects should be 

smaller than the distance between different objects. 

There are many approaches and methods which take into 

account the above condition. One of the most important and pop- 

ular approaches is to use the Mahalanobis distance as a distance 

metric which assumes some linear structure of data. However, 

this assumption significantly restricts the applicability of the 

Mahalanobis distance for comparing pairs of objects. Therefore, 

in order to overcome this restriction, the kernelization of linear 

methods is one of the possible ways for solving the metric learning 
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problem. Bellet et al. [2] review several approaches and algorithms 

to deal with nonlinear forms of metrics. In particular, these are 

the Support Vector Metric Learning algorithm provided by Xu 

et al. [29] , the Gradient-Boosted Large Margin Nearest Neighbors 

method proposed by Kedem et al. [14] , the Hamming Distance 

Metric Learning algorithm provided by Norouzi et al. [22] . 

A powerful implementation of the metric learning dealing with 

non-linear data structures is the so-called Siamese neural network 

(SNN) introduced by Bromley et al. [5] in order to solve signature 

verification as a problem of image matching. This network consists 

of two identical sub-networks joined at their outputs. The two 

sub-networks extract features from two input examples during 

training, while the joining neuron measures the distance between 

the two feature vectors. The Siamese architecture has been ex- 

ploited in many applications, for example, in face verification [8] , 

in the one-shot learning in which predictions are made given 

only a single example of each new class [15] , in constructing an 

inertial gesture classification [3] , in deep learning [26] , in extract- 

ing speaker-specific information [7] , for face verification in the 

wild [13] . This is only a part of successful applications of SNNs. 

Many modifications of SNNs have been developed, including fully- 

convolutional SNNs [4] , SNNs combined with a gradient boosting 

classifier [18] , SNNs with the triangular similarity metric [30] . 

One of the difficulties of the SNN as well as other neural net- 

works is that limited training data lead to overfitting when training 

neural networks. Many different methods have been developed 

to prevent overfitting, for example, dropout methods [24] which 

are based on combination of the results of different networks by 

randomly dropping out neurons in the network. A very interesting 
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new method which can be regarded as an alternative to deep 

neural networks is the deep forest proposed by Zhou and Feng 

[31] and called gcForest. In fact, this is a multi-layer structure 

where each layer contains many random forests, i.e., this is an 

ensemble of decision tree ensembles. Zhou and Feng [31] point out 

that their approach is highly competitive to deep neural networks. 

In contrast to deep neural networks which require great effort in 

hyperparameter tuning and large-scale training data, gcForest is 

much easier to train and can perfectly work when there are only 

small-scale training data. The deep forest solves tasks of classi- 

fication as well as regression. Therefore, by taking into account 

its advantages, it is important to modify it in order to develop 

a structure solving the metric learning task. We propose the 

so-called Siamese Deep Forest (SDF) which can be regarded as an 

alternative to the SNNs and which is based on gcForest proposed 

by Zhou and Feng [31] and can be viewed as its modification. 

Three main ideas underlying the SDF can be formulated as follows: 

1. We propose to modify training set by using concatenated pairs 

of vectors. 

2. We define the class distributions in the deep forest as the 

weighted sum of the tree class probabilities where the weights 

are determined in order to reduce distances between seman- 

tically similar pairs of examples and to increase them between 

dissimilar pairs. The weights are training parameters of the SDF. 

3. We apply the greedy algorithm for training the SDF, i.e., the 

weights are successively computed for every layer or level of 

the forest cascade. 

We consider the case of the weakly supervised learning 

[2] when there are no information about the class labels of in- 

dividual training examples, but only information in the form of 

sets of semantically similar or dissimilar pairs of training data 

is provided, i.e., we know only semantic similarity of examples. 

However, the case of the fully supervised learning when the 

class labels of individual training examples are known can be 

considered in the same way. 

It should be noted that the SDF cannot be called Siamese in the 

true sense of the word. It does not consist of two gcForests like 

the SNN. However, its aim coincides with the SNN aim. Therefore, 

we give this name for the gcForest modification. 

The paper is organized as follows. A formal statement of the 

metric learning problem can be found in Section 2 . Section 3 gives 

a very short introduction into the SNNs. A short description of 

gcForest proposed by Zhou and Feng [31] is given in Section 4 . The 

ideas underlying the SDF are represented in Section 5 in detail. 

A modification of gcForest using the weighted averages, which 

can be regarded as a basis of the SDF is provided in Section 6 . 

Algorithms for training and testing the SDF are considered in 

Section 7 . Numerical experiments with real data illustrating 

cases when the proposed SDF outperforms gcForest are given in 

Section 8 . Concluding remarks are provided in Section 9 . 

2. A formal statement of the metric learning problem 

Suppose there is a training set S = { (x i , x j , y i j ) , (i, j) ∈ K} 
consisting of N pairs of examples x i ∈ R 

m and x j ∈ R 

m such that 

a binary label y ij ∈ {0, 1} is assigned to every pair ( x i , x j ). If two 

data vectors x i and x j are semantically similar or belong to the 

same class of objects, then y ij takes the value 0. If the vectors 

correspond to different or semantically dissimilar objects, then 

y ij takes the value 1. This implies that the training set S can be 

divided into two subsets. The first subset is called the similar or 

positive set and is defined as 

S = { (x i , x j ) : x i and x j are semantically similar and y i j = 0 } . (1) 

Fig. 1. An architecture of the SNN. 

The second subset is the dissimilar or negative set. It is defined 

as 

D = { (x i , x j ) : x i and x j are semantically dissimilar and y i j = 1 } . (2) 

If we have two observation vectors x i ∈ R 

m and x j ∈ R 

m from 

the training set, then the distance d ( x i , x j ) should be minimized 

if x i and x j are semantically similar, and it should be maximized 

between dissimilar x i and x j . It has been mentioned that the most 

general and popular real-valued metric function is the squared 

Mahalanobis distance d 2 
M 

(x i , x j ) which is defined for vectors x i 
and x j as 

d 2 M 

(x i , x j ) = (x i − x j ) 
T M(x i − x j ) . (3) 

Here M ∈ R 

m ×m is a symmetric positive semi-defined matrix. 

If x i and x j are random vectors from the same distribution with 

covariance matrix C , then M = C −1 . If M is the identity matrix, 

then d 2 
M 

(x i , x j ) is the squared Euclidean distance. Learning the 

Mahalanobis distance metric M implicitly corresponds to seeking 

a linear transformation which projects data points into a low- 

dimensional subspace such that the Euclidean distance in the 

transformed space is equal to the Mahalanobis distance in the 

original space. 

Given subsets S and D, the metric learning optimization 

problem can be formulated as follows: 

M 

∗ = arg min 

M 

[ J(M, D, S) + λ · R (M) ] , (4) 

where J(M, D, S) is a loss function that penalizes violated con- 

straints; R ( M ) is some regularizer on M; λ≥ 0 is the regularization 

parameter. 

3. Siamese neural networks 

Before studying the SDF, we consider the SNN which is an 

efficient and popular tool for dealing with data of the form S and 

D. It will be a basis for constructing the SDF. 

A standard architecture of the SNN given in the literature (see, 

for example, [8] ) is shown in Fig. 1 . Let x i and x j be two data 

vectors corresponding to a pair of elements from a training set, 

for example, images. Suppose that f is a map of x i and x j to a 

low-dimensional space such that it is implemented as a neural 

network with the weight matrix W . At that, parameters W are 

shared by two neural networks f ( x 1 ) and f ( x 2 ) denoted as E 1 
and E 2 and corresponding to different input vectors, i.e., they 

are the same for the two neural networks. The property of the 

same parameters in the SNN is very important because it defines 

the corresponding training algorithm. By comparing the outputs 

h i = f (x i ) and h j = f (x j ) using the Euclidean distance d ( h i , h j ), 

we measure the compatibility between x i and x j . 

If we assume for simplicity that the neural network has one 

hidden layer, then there holds 

h = σ (W x + b) . (5) 
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