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a b s t r a c t 

This paper considers the multiobjective bilevel programming problem (MOBLPP) with multiple objec- 

tive functions at the upper level and a single objective function at the lower level. By adopting the 

Karush-Kuhn-Tucker (KKT) optimality conditions to the lower level optimization, the original multiobjec- 

tive bilevel problem can be transformed into a multiobjective single-level optimization problem involving 

the complementarity constraints. In order to handle the complementarity constraints, an existing smooth- 

ing technique for mathematical programs with equilibrium constraints is applied. Thus, a multiobjective 

single-level nonlinear programming problem is formalized. For solving this multiobjective single-level op- 

timization problem, the scalarization approaches based on weighted sum approach and Tchebycheff ap- 

proach are used respectively, and a constrained multiobjective differential evolution algorithm based on 

decomposition is presented. Some illustrative numerical examples including linear and nonlinear versions 

of MOBLPPs with multiple objectives at the upper level are tested to show the effectiveness of the pro- 

posed approach. Besides, NSGA-II is utilized to solve this multiobjective single-level optimization model. 

The comparative results among weighted sum approach, Tchebycheff approach, and NSGA-II are provided. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Bilevel programming problem (BLPP) is a complicated math- 

ematical model with a hierarchical structure involving two de- 

cision makers in the decision process [1] . BLPPs have a wide 

domain of applications, particularly in urban traffic and trans- 

portation, resource assignment, supply chain planning, structural 

optimization, engineering design, game playing strategies, and oth- 

ers. For example, Chiou [2] established a bilevel model with link 

capacity expansion for a normative road network design with un- 

certain travel demand in order to simultaneously reduce travel de- 

lay to road users and mitigate the vulnerability of the road net- 

work. Dempe et al. [3] developed a linear bilevel model for a 

natural gas cash-out problem between a natural gas shipping com- 

pany and a pipeline operator. A penalty function method was 

proposed to solve the model. Hesamzadeh and Yazdani [4] pro- 

posed a mixed-integer linear bilevel model with multi-follower for 
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transmission planning in an imperfect competition environment 

of the electricity supply industry, and the model was solved us- 

ing Kuhn-Tucker optimality conditions and a binary mapping ap- 

proach. Gao et al. [5] proposed two nonlinear bilevel pricing mod- 

els for pricing problems between the vendor and the buyer in a 

two-echelon supply chain. A PSO-based algorithm was developed 

to solve these bilevel pricing models. Lots of instances in applica- 

tion have been summarized in [15–21] . 

In view of the fact that the applications of BLPPs are more 

and more extensive and diverse, efficient solution strategies are 

of critical importance for solving these BLPP models. Till now, 

many studies on solution strategies including classical methods 

and heuristic algorithms have been done for all types of BLPPs. 

Especially, a variety of heuristic algorithms has been employed to 

solve BLPPs successfully [6–14] , which have numerous advantages, 

such as simplicity, efficiency, flexibility and robustness. Compared 

with classical methods, heuristic algorithms are suitable for either 

large-scale BLPPs or BLPPs with weak features. The reviews, mono- 

graphs, and surveys on the models, algorithms and applications of 

BLPPs may refer to [1,15–21] . 
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Table 1 

The average CPU time (in seconds) used by MOEA/D-DE with 

weighted sum approach and MOEA/D-DE with Tchebycheff

approach. 

Instance Weighted sum approach Tchebycheff approach 

1 288 .8705 269 .1355 

2 290 .4008 305 .5410 

3 1153 .4208 1169 .1095 

4 1514 .5671 1652 .7553 

5 316 .4801 381 .0618 

6 344 .4778 256 .3112 

7 487 .5152 579 .9305 

8 235 .3970 219 .2462 

9 608 .9422 550 .5114 

10 674 .3858 691 .0868 

11 1060 .9020 1102 .1321 

Table 2 

The C -metric values between MOEA/D with weighted sum 

approach ( A ) and Tchebycheff approach ( B ). Mean denotes 

the mean value of C -metric values, and SD means the stan- 

dard deviation of C -metric values in ten independent runs. 

Instance C ( A, B ) C ( B, A ) 

Mean SD Mean SD 

1 0 .0099 0 .0072 0 .0251 0 .0449 

2 0 0 0 0 

3 0 .0106 0 .1979 0 .0053 0 .0107 

4 0 .0078 0 .0068 0 .0086 0 .0055 

5 0 .0040 0 .0034 0 .0043 0 .0035 

6 0 0 0 .0205 0 .0649 

7 0 .0120 0 .0400 0 .0205 0 .0679 

8 0 .0517 0 .0182 0 .0788 0 .0148 

9 0 .0503 0 .0214 0 .0768 0 .0154 

10 0 .0 0 09 0 .0 0 08 0 0 

11 0 .0022 0 .0034 0 .0702 0 .0433 

Multiobjective bilevel programming problem (MOBLPP) involv- 

ing multiple objectives either at a certain level or at both levels 

has great significance in application, for example transportation 

system planning and management [22] , network flow problem in 

a large-scale construction project [23] . However, in contrast with 

the vast literature on the BLPPs, little work has been conducted on 

MOBLPPs, either in algorithm or in application [25,26] . MOBLPPs 

can be classified into three categories: 1) MOBLPP with multiple 

objectives at the upper level [24–27] , 2) MOBLPP with multiple 

objectives at the lower level [28,29] , and 3) MOBLPP with multi- 

ple objectives at both levels [30–36] . Such multiobjective bilevel 

models are difficult to solve due to their intrinsic nonconvexity and 

many objectives even in one level. This paper centers on the solu- 

tion methodology for MOBLPP in first category. 

With respect to some recent studies on MOBLPP with multi- 

ple objectives at the upper level, most of the work focused on 

linear MOBLPPs. Ye [24] derived necessary optimality conditions 

by considering a combined problem, with both the value function 

and the Karush-Kuhn-Tucker (KKT) conditions of the lower-level 

problem involved in the constraints. Alves [25] proposed a multi- 

objective particle swarm optimization (MOPSO) algorithm to solve 

linear multiobjective bilevel programming problems with multiple 

objectives at the upper level. In MOPSO algorithm, each particle 

of the swarm is composed by two different parts, i.e. the upper 

level variable updated according to the principles of PSO, and the 

lower level variable given afterwards through the resolution of the 

lower-level optimization problem for the fixed upper level variable. 

Alves, Dempe, and Júdice [26] analyzed the linear bilevel program- 

ming problem with bi-objective on the upper level and a single ob- 

jective at the lower level. However the problem considered in the 

paper has no lower level variables in the upper level constraints. 

The original problem was reformulated as a multiobjective mixed 

0-1 linear programming problem. An existing interactive reference 

point procedure for multiobjective mixed-integer linear program- 

ming was employed to compute Pareto optimal solutions to the 

original problem. Calvete and Galé [27] considered general bilevel 

problems with many objectives at the upper level, when all objec- 

tive functions are linear and constraints at both levels define poly- 

hedra. This problem can be reformulated as a multiobjective prob- 

lem with linear objective functions over a feasible region which is 

implicitly defined by a linear optimization problem and, in gen- 

eral, is non-convex. The weighted sum scalarization methods and 

scalarization methods were used to obtain efficient solutions. In 

above-mentioned literature, the solution algorithms were proposed 

only for linear version of MOBLPP with multiple objectives at the 

upper level. The aim of this paper is the development of solution 

methodology for both linear and nonlinear versions of MOBLPPs 

with multiple objectives at the upper level. 

Regarding solution methodology of MOBLPP with multiple ob- 

jectives at the upper level, there exist two ways to be chosen. One 

way is to transform the two-level structure to a single-level forma- 

tion by adopting the optimality conditions or other techniques to 

the lower level optimization problem, and then utilize multiobjec- 

tive evolutionary algorithms (MOEAs) or scalarization approaches 

to solve the single-level transformation model. For example, the 

way was used in [26] . The other way is to keep the two-level struc- 

ture of original problem, and then apply MOEAs or scalarization 

approaches to the upper level optimization, while use the clas- 

sical optimization techniques or heuristic algorithms to solve in- 

teractively the lower level optimization for each given upper level 

variable. For example, the way was used in [25] . The first way has 

a good efficiency, yet the lower level optimization must satisfy a 

certain optimality. In contrast, the second way is time-consuming, 

but the lower level optimization may have weak property. This pa- 

per aims at the first way in designing the algorithm for MOBLPP 

with multiple objectives at the upper level. 

Based on above consideration, a solution approach for MOBLPP 

with multiple objectives at the upper level is presented. When 

the KKT optimality conditions are satisfied for the lower level 

optimization, the original multiobjective bilevel formulation can 

be converted into a multiobjective single-level nonlinear optimiza- 

tion problem with the complementarity constraints. Subsequently, 

an existing smoothing technique is applied to deal with the 

complementarity constraints. Thus, a constrained multiobjective 

single-level nonlinear optimization problem is formalized. For 

solving the reformulation of the original problem as a constrained 

multiobjective single-level programming problem, the scalarization 

approaches based on weighted sum approach and Tchebycheff

approach are used respectively, and a constrained multiobjec- 

tive differential evolution algorithm based on decomposition is 

presented, which is a modification to MOEA/D [39] . In addition, 

NSGA-II [41] is also utilized to solve reformulation of the original 

problem. By comparison of different MOEAs, we try to find which 

MOEA is more suitable for the reformulation of MOBLPP. 

The main contributions of this work can be summarized as fol- 

lows. 

(1) The transformation model of MOBLPP is constructed to re- 

duce its computational complexity. A multiobjective single 

level optimization is formed by using the KKT optimality 

conditions in the lower level programming, and then adopt- 

ing the smoothing technique for the complementarity con- 

straints. 

(2) A constrained multiobjective differential evolution algorithm 

based on decomposition is developed for solving the trans- 

formation model of MOBLPP. For obtaining a uniform dis- 

tribution of solutions in objective space, an adaptive weight 
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