
Knowledge-Based Systems 103 (2016) 56–59

Contents lists available at ScienceDirect

Knowle dge-Base d Systems

journal homepage: www.elsevier.com/locate/knosys

Original Software Publication

The Siebog multiagent middleware

Dejan Mitrovi ́c

a , Mirjana Ivanovi ́c

a , Milan Vidakovi ́c

b , ∗, Zoran Budimac

a

a Department of Mathematics and Informatics, Faculty of Sciences, University of Novi Sad, Serbia
b Faculty of Technical Sciences, University of Novi Sad, Serbia

a r t i c l e i n f o

Article history:

Received 21 July 2015

Revised 23 February 2016

Accepted 22 March 2016

Available online 14 April 2016

Keywords:

Multiagent middleware

Software agents

Java EE

Html5

a b s t r a c t

This paper presents Siebog, a software framework and an execution environment for the development

of software agents. Built using the standard Java EE and HTML5 technologies, it provides all the benefits

of clustered computing on the server, as well as platform-independence on the client. The tight integra-

tion of the two development paradigms has resulted in a system that also provides heterogeneous agent

mobility, cross-platform messaging, and code sharing.

© 2016 Elsevier B.V. All rights reserved.

Table 1

Software metadata.

Nr. (executable) Software metadata description Please fill in this column

S1 Current software version 1.3.1

S2 Permanent link to executables of this version https://github.com/ElsevierKnowledgeBasedSystems/

KNOSYS- D- 15- 01003

S3 Legal software license Apache license 2.0

S4 Computing platform/Operating system Linux, Windows, OS X

S5 Installation requirements & dependencies Java version 8.x or greater

S6 If available, link to user manual - if formally published include a reference to the

publication in the reference list

[6] . See [1,8,9] for descriptions of XJAF and Radigost.

S7 Support email for questions mitrovic.dejan@gmail.com

Table 2

Code metadata.

Nr. Code metadata description Please fill in this column

C1 Current code version 1.3.1

C2 Permanent link to code/repository used of this code version https://github.com/ElsevierKnowledgeBasedSystems/

KNOSYS- D- 15- 01003

C3 Legal code license Apache license 2.0

C4 Code versioning system used git

C5 Software code languages, tools, and services used Java EE, JavaScript, Eclipse IDE for Java EE developers, Ant

C6 Compilation requirements, operating environments & dependencies Java. All dependencies (JAR files) are included in the project.

C7 If available Link to developer documentation/manual https://github.com/gcvt/siebog/wiki

C8 Support email for questions mitrovic.dejan@gmail.com

∗ Corresponding a uthor. Tel.: +381214852422.

E-mail addresses: mitrovic.dejan@gmail.com (D. Mitrovi ́c), mira@dmi.uns.ac.rs

(M. Ivanovi ́c), minja@uns.ac.rs (M. Vidakovi ́c), zjb@dmi.uns.ac.rs (Z. Budimac).

http://dx.doi.org/10.1016/j.knosys.2016.03.017

0950-7051/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.knosys.2016.03.017
http://www.ScienceDirect.com
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2016.03.017&domain=pdf
https://github.com/ElsevierKnowledgeBasedSystems/KNOSYS-D-15-01003
http://mitrovic.dejan@gmail.com
https://github.com/ElsevierKnowledgeBasedSystems/KNOSYS-D-15-01003
https://github.com/gcvt/siebog/wiki
http://mitrovic.dejan@gmail.com
mailto:mitrovic.dejan@gmail.com
mailto:mira@dmi.uns.ac.rs
mailto:minja@uns.ac.rs
mailto:zjb@dmi.uns.ac.rs
http://dx.doi.org/10.1016/j.knosys.2016.03.017

D. Mitrovi ́c et al. / Knowledge-Based Systems 103 (2016) 56–59 57

1. Introduction

Software agents (or simply, agents) can rarely operate on their

own; often, they need a runtime environment (also called a mul-

tiagent middleware), to support their execution. In this paper we

present Siebog, our multiagent middleware designed for the mod-

ern web. Its main purpose is to provide infrastructural support for

multiagent systems with practical applications in many artificial

intelligence domains, including swarm intelligence, artificial (so-

cial) life, distributed machine learning and decision making, etc.

The main advantage of Siebog is that it achieves better perfor-

mances and uses more advanced technologies than other existing

agent middlewares. For example, to achieve agent load-balancing

and fault-tolerance, we use ready-made industrial solutions, in-

stead of devising proprietary solutions. Therefore, Siebog can run

twice as many agents as other frameworks [1] on the same hard-

ware. We have also introduced JavaScript-based agents that work

in web browsers, that can communicate with server-based agents

and can migrate to the server, if needed.

Over the years, a lot of research effort has been dedicated to

the development of multiagent middlewares [2] . Agent researchers

have recognized this ongoing trend of migrating software to the

web and have provided web access to their respective solutions.

But, this is usually done in an inefficient manner. For example, in

many Java-based solutions (e.g., JADE [3] and JaCaWeb [4]) the web

component is provided in form of a Java applet. But Java applets

require a browser plug-in, which is unavailable on many platforms

or requires manual installation. With one of its parts implemented

in pure JavaScript, Siebog supports a wider range of hardware and

software configurations.

The support for distributed execution is present in almost all

existing agent middlewares. However, most of them use plain com-

puter networks and/or implement their own approaches for agent

load-balancing and fault-tolerance (e.g., [3,5]). One disadvantage

of these approaches is lower flexibility. For example, in JADE the

agent developer needs to manually specify which agent is hosted

on which computer, while in Siebog this process is performed

automatically [6] .

The goal of Siebog is to provide an infrastructure for execut-

ing agents in web environments, but in accordance to the mod-

ern standards. We demonstrate that it is not necessary to “reinvent

the wheel.” Instead, it is more beneficial to use existing, standards-

compliant, and well-tested solutions offered by Java EE and HTML5.

The only other purely HTML5-based agent platform that we are

aware of is described in [7] . However, Siebog uses more advanced

client-side JavaScript technologies to achieve true multi-threading

and full-duplex communication. Similarly, on the server our system

provides more advanced clustering features described earlier.

Section 2 of this paper discusses the Siebog middleware in de-

tails, including its functionalities and implementation. An illustra-

tive example is presented in Section 3 while the overall conclu-

sions are given in Section 4 .

2. Siebog multiagent middleware

Siebog is based on our previous two systems, Extensible Java EE-

based Agent Framework (XJAF) [1,8] and Radigost [9] , (Table 1) in a

way that not only combines their individual functionalities but also

results in new features.

The overall architecture is shown in Fig. 1 . Client-side agents

can be executed on a range of devices, such as smartphones,

tablets, desktop computers, and Smart TVs. They use a JavaScript

library to access the framework’s functionalities, and can commu-

nicate with the server over AJAX or the WebSocket protocol.

The server side of Siebog is executed on top of computer clus-

ters. It consists of several modules called managers [1] . The Agent

Manager is in charge of controlling the agents’ life-cycles. The Mes-

sage Manager is in charge of inter-agent communication, while the

WebClient acts as a directory of remote client-side Siebog instances.

If needed, each client-side agent can have its own stub repre-

sentation on the server. To other entities, the stub appears as a

regular server-side agent. However, it simply forwards all incoming

messages to the actual client-side instance. Therefore, Siebog can

achieve completely transparent communication between agents lo-

cated in distributed heterogeneous client-side devices (demon-

strated in Section 3).

2.1. Software functionalities

On the server side, the two most important features of Siebog

are scalability and fault-tolerance . Scalability allows our system to

automatically distribute agents across the cluster [1] . This feature

enables Siebog to support large agent societies. Even with the

same number of machines in cluster, our middleware can oper-

ate twice the number of agents compared to the JADE [1] . Fault-

tolerance is concerned with replicating the state of each server-

side component and restoring it in case of software or hardware

failures.

The main advantage of the Siebog’s client-side is platform in-

dependence [9] , a greater one than provided by Java. Being a

web application, Siebog also requires no installation or configura-

tion steps. And finally, as demonstrated in [9] , its runtime perfor-

mance is comparable to that of a desktop multiagent platform: our

JavaScript-based agents executed complex tasks in web browsers in

approximately 25 ms, while JADE-based Java agents executed the

same tasks in approximately 20 ms.

The tight integration of client and server sides of Siebog has re-

sulted in several new important functionalities. First of all, agents

are able to communicate with each other regardless of their “phys-

ical” locations. A lot of effort has also been invested in provid-

ing agent code sharing, which means that an agent can be writ-

ten only once and executed both on the server and on the client.

Finally, heterogeneous agent mobility allows agents to freely move

between the client and the server.

2.2. Implementation details

The server side of Siebog is implemented in Java. Most of its

functionalities stem from Java EE 7 components and the WildFly

application server.

Agents are realized as Enterprise JavaBean (EJB) components. In

the vast majority of cases, stateful session EJBs are used [1] . Agent

communication is achieved using the Java Message Service (JMS),

which takes care of important issues such as message ordering, de-

livery in case of failures, etc.

Server-side managers are realized as stateless session EJBs. This

offers the greatest flexibility and runtime performance, since a

stateless EJB can freely be created on any cluster node. To share in-

formation across the cluster (e.g., the details about running agents),

managers rely on the distributed Infinispan cache included in the

WildFly server.

The client-side of Siebog is implemented in pure JavaScript.

Agents are represented as Web workers, so each one has its own

(native) thread of execution. Web workers also provide a commu-

nication infrastructure, allowing agents in a single web page to di-

rectly exchange messages.

3. Illustrative examples

The Siebog’s ability to run large agent societies was demon-

strated in [1] . The experiment included pairs of agents. In each

pair, the first agent would issue a request to the second, which

Download English Version:

https://daneshyari.com/en/article/6862284

Download Persian Version:

https://daneshyari.com/article/6862284

Daneshyari.com

https://daneshyari.com/en/article/6862284
https://daneshyari.com/article/6862284
https://daneshyari.com

