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To gain a better understanding of how neural ensembles communicate and process information, neural de-
coding algorithms are used to extract information encoded in their spiking activity. Bayesian decoding is one
of the most used neural population decoding approaches to extract information from the ensemble spiking
activity of rat hippocampal neurons. Recently it has been shown how Bayesian decoding can be implemented
without the intermediate step of sorting spike waveforms into groups of single units. Here we extend the
approach in order to make it suitable for online encoding/decoding scenarios that require real-time decoding
such as brain-machine interfaces. We propose an online algorithm for the Bayesian decoding that reduces the
time required for decoding neural populations, resulting in a real-time capable decoding framework. More
specifically, we improve the speed of the probability density estimation step, which is the most essential and
the most expensive computation of the spike-sorting-less decoding process, by developing a kernel density
compression algorithm. In contrary to existing online kernel compression techniques, rather than optimizing
for the minimum estimation error caused by kernels compression, the proposed method compresses kernels
on the basis of the distance between the merging component and its most similar neighbor. Thus, without
costly optimization, the proposed method has very low compression latency with a small and manageable
estimation error. In addition, the proposed bandwidth matching method for Gaussian kernels merging has an
interesting mathematical property whereby optimization in the estimation of the probability density func-
tion can be performed efficiently, resulting in a faster decoding speed. We successfully applied the proposed
kernel compression algorithm to the Bayesian decoding framework to reconstruct positions of a freely moving
rat from hippocampal unsorted spikes, with significant improvements in the decoding speed and acceptable
decoding error.

© 2015 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

sponses. Statistical inferences have played an important role in many
encoding/decoding frameworks, e.g. [1-6]. Generally, the encoding

Neural encoders and decoders are commonly used to study the model captures necessary properties from the recorded neural activ-
relation between behavioral or sensory covariates and neural re- ities and constructs a model that maps to the observed behaviors or

stimuli. The decoding model then employs the constructed relation to
infer behaviors or stimuli based on the observed neural activity. For
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of pyramidal neurons in the CA1 region of the rodent hippocampus
contain information that is correlated to spatial behaviors of the ani-
mal [7]. These cells are also known as place cells because spiking ac-
tivities of certain place cells become more active when an animal is in
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a certain location [8]. In other words, the temporal patterns of spikes
from different place cells are spatially tuned to different locations.

Most of existing neural encoders/decoders require sorted spikes
to operate [9,10,1,11-18,2] (see [19] for a review). That is spiking ac-
tivity of each single neuron has to be isolated from others and sepa-
rated from background electrical noise before being handed over to
the encoding/decoding model. This prerequisite step is called “spike
sorting”. Many works have been contributed to the developing of
fast and reliable spike sorting algorithms [20]. However, a study has
shown that classification errors of assigning spikes to incorrect unit
have various impact to information capacity of the resulting sorted
spikes [21]. In addition, the objective of spike sorting to isolate and
identify the cell that originated each spike is rather different from
the goal of neural decoding which is to minimize the decoding error.
Unclassified spikes during the sorting in attempt to minimize sort-
ing errors could still convey information that can be extracted by the
encoder/decoder.

To avoid the possibility of information loss and accumulation of
errors from spike sorting, Bayesian encoding/decoding framework
proposed in [22] has introduced a method to create a direct mapping
between spike waveform features and the covariates of interest with-
out a prerequisite step of spike sorting. The name “Bayesian” comes
from the adoption of a statistical inference that utilizes Bayes’ the-
orem. More specifically, the decoding is obtained by the maximum
posterior probability in Eq. (1), where the covariates are spatial be-
haviors of the animal, e.g. positions or head directions.

p(s|x)p(x)
p(s) (1)
o« p(slx)p(x)

p(covariates|spikes) = p(x|s) =

Encoding

Outline of the Bayesian encoding/decoding framework [22] is il-
lustrated in Fig. 1. The first stage (A) detects and extracts spike
waveforms from extracellularly recorded multiunit activity from CA1
region of a freely moving rat in an open field. Next (B), waveform fea-
tures, such as amplitudes, are extracted. At the same time (C), po-
sition of the animal is tracked using a video camera and forwarded
together with the waveform features to the next stage (D), where the
probability models p(s,x) and 7 (x) are modeled.

During the decoding phase (e), a sequence of spikes is parti-
tioned into bins. For each decoding bin, the posterior probability is
computed and the behavior is decoded. The likelihood p(s|x) of the
stimulus x given a set of spike features s models the relation be-
tween spiking patterns (modulation of spike amplitudes and firing
rates) and behaviors by assuming spatiotemporal Poisson statistics as
follows:

p(slx) = A" T A(six) [e 2%, (2)

i=1

where the decoding bin containing n spikes has a size of At time in-
terval. Rate parameter A (s;,x) which is the fraction of the occurrences
of certain spike features s; coinciding with certain stimulus x divided
by the total time stimulus x (occupancy(x)) is presented as follows:

spikecount (six) _ N p(six) _
occupancy(x) T m(x)

p(siXx)
T(x)’

AsiX) = (3)

where N is the total number of spikes and T is the total time from
all the decoding bins. p(s;x) is the joint probability distribution of
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Fig. 1. Bayesian decoding using unsorted spikes in the rat hippocampus.
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