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a b s t r a c t

The similarity measure of vague sets is an important index in intelligent systems. Based on the implication

function, this paper investigates the similarity measure of vague sets (or elements) and proposes new formu-

las to calculate the similarity measure of vague sets (or elements). A comparison with the existing similarity

measures for vague sets and two applications show that our proposed method is reasonable and valid.

© 2015 Published by Elsevier B.V.

1. Introduction1

Since Zadeh [29] first introduced fuzzy set theory, many ap-2

proaches and theories addressing imprecision and uncertainty have3

been proposed. Some of these theories, such as Atanassov’s intuition-4

istic fuzzy sets theory [1] and Zadeh’s generalized theory of uncer-5

tainty (GTU) [30], are extensions of classic fuzzy set theory and treat6

uncertainty and information from a much broader perspective. An-7

other well-known generalization of an ordinary fuzzy set is based on8

vague sets and was introduced by Gau and Buehrer [15] in 1993. Since9

then, the theory of vague sets has attracted the attention of many10

researchers seeking to address imperfectly defined facts and data,11

including situations with imprecise knowledge. Some authors have12

investigated the topic and obtained meaningful conclusions. For ex-13

ample, Chen [8] used vague sets to analyze fuzzy system reliability,14

Dug and Choi [13] and Kuo et al. [19] investigated multi-criteria fuzzy15

decision-making based on vague sets, Ye [28] proposed an improved16

method of multi-criteria fuzzy decision-making based on vague sets,17

Demirci and Eken [11] introduced the theory of vague complement18

operation, and Gottwald [16] investigated mathematical fuzzy logic19

as a tool to treat vague information, Feng et al. [14] proposed a vague-20

rough set approach for extracting knowledge under uncertain en-21

vironment. As a powerful tool for describing imprecise data, vague22

sets theory has been extensively applied in many fields such as pat-23

tern recognition, machine learning, fuzzy decision-making and so24
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on. Moreover, some researchers have investigated the connection 25

between intuitionistic fuzzy sets and vague sets. For more details, 26

please see [4]. 27

The similarity measure of fuzzy sets is an important component 28

of fuzzy set theory. The similarity measure indicates the degree of 29

similarity between two fuzzy sets. Wang [25] first proposed the con- 30

cept of the similarity measure in fuzzy set theory and computational 31

formula for that purpose. Since then, the similarity measure of fuzzy 32

sets has been further investigated and extensively applied in many 33

fields such as fuzzy clustering, image processing, fuzzy reasoning, and 34

fuzzy neural networks [9,25]. For example, Balopoulos et al. [2] in- 35

vestigated similarity measures for fuzzy operators, Hung and Yang 36

[17] investigated the J-divergence of intuitionistic fuzzy sets and its 37

application to pattern recognition, and Zeng and Guo [31] investi- 38

gated the similarity measure of interval-valued fuzzy sets, Wu and 39

Mendal [26] investigated the uncertainty measures for interval type- 40

2 fuzzy sets. Using these applications of the similarity measure, some 41

researchers extended it to vague sets theory. The similarity measure 42

of vague sets indicates the vague sets’ degree of similarity. For exam- 43

ple, Chen [6,7] investigated the similarity measure and the weighted 44

similarity measure between vague sets and between elements, re- 45

spectively, Dug and Chul [12] improved Chen’s [7] similarity measure 46

expressions and proposed a new method to calculate the similarity 47

measure between vague sets in 1999, Li et al. [21] investigated the dis- 48

tance between vague sets and proposed an improved similarity mea- 49

sure for vague sets, Xu and Wei [27] applied the similarity measure 50

between vague sets in fuzzy classification, Zhang and Jiang [34] inves- 51

tigated the non-probabilistic entropy of a vague set, Zhang et al. [33] 52
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investigated the framework for comparing two interval sets by inclu-53

sion measures.54

It is well known that fuzzy implication functions play a fundamen-55

tal role in fuzzy logic, approximate reasoning and applications such as56

fuzzy control, fuzzy relational equation, fuzzy DI-subsethood (inclu-57

sion) measure and image processing. Thus the implication functions58

have been extensively studied by many researchers in theoretical and59

practical applications. For example, Bustince [5] investigated the in-60

dicator of inclusion grade for interval-valued fuzzy sets based on im-61

plication; De Baets and Kerre [10] investigated fuzzy inclusion and its62

inverse problem; Mas et al. [22] studied the law of importation for63

two types of implications; Pei [23] investigated the unified full im-64

plication inference algorithms of fuzzy reasoning, Jin et al. [18] inves-65

tigated certainty rule base and its inference method; and Zhou et al.66

[35] characterized intuitionistic fuzzy rough sets based on intuition-67

istic fuzzy implications, Beliakov et al. [3] investigated the properties68

relating to consensus measures and proposed two general models69

built component-wise from aggregation functions and fuzzy impli-70

cations, Zhai et al. [32] investigated the semantical and syntactical71

characteristics of fuzzy decision implications. Until now, the existing72

similarity measures for vague sets have been defined based on the73

distance between the vague sets. Considering the importance of im-74

plication functions, it is necessary to investigate the similarity mea-75

sure of vague sets from different perspectives. Based on the use of76

implication function, this paper investigates similarity measures of77

vague sets, proposes new formulas to calculate the similarity mea-78

sures of vague sets or elements, performs sensitive analysis of these79

similarity measures based on implication functions and compares the80

existing similarity measures of vague sets with our proposed similar-81

ity measures. Finally, we investigate the classification and decision82

making based on the similarity measure of vague sets.83

The rest of this work is organized as follows. In Section 2, we84

review some basic ideas about the theory of vague sets. In Section 3,85

we propose similarity measures between vague sets and between86

elements based on the implication function, and we make sensitive87

analysis and comparisons between the existing similarity measures88

of vague sets and our proposed similarity measures of vague sets. In89

Section 4, we investigate classification and decision making based90

on the similarity measure of vague sets. The final section is the91

conclusion.92

2. Basic ideas93

Throughout this paper, we use U, U = {u1, u2, u3, . . . , un}, to de-94

note the discourse set, V(U) stands for the set of all vague subsets in95

U, and A expresses a vague set.96

Let L = [0, 1] and [L] be the set of all closed subintervals of97

the interval [0, 1]. Especially for an arbitrary element a ∈ [0,98

1], we assume that a is the same as [a, a], namely, a = [a, a].99

Then, according to Zadeh’s extension principle [29], for any a =100

[a−, a+], b = [b−, b+] ∈ [L], we can popularize some operators such101

as
∨

,
∧

, and c to [L] and have a
∨

b = [a− ∨
b−, a+ ∨

b+], a
∧

b =102

[a− ∧
b−, a+ ∧

b+], ac = [1 − a+, 1 − a−],
∨

t∈W at =103

[
∨

t∈W a−
t ,

∨
t∈W a+

t ] and
∧

t∈W at = [
∧

t∈W a−
t ,

∧
t∈W a+

t ], where104

W denotes an arbitrary index set. Furthermore, we have105

a = b ⇐⇒ a− = b−, a+ = b+, a ≤ b ⇐⇒ a− ≤ b−, a+ ≤ b+, and106

a < b ⇐⇒ a ≤ b and a �= b; there is then a minimal element 0 = [0, 0]107

and a maximal element 1 = [1, 1] in [L].108

A vague set A in U is characterized by a truth-membership func-109

tion tA and a false-membership function fA, tA: U → [0, 1], fA: U110

→ [0, 1], where tA(ui) is a lower bound on the grade of member-111

ship of ui derived from the evidence for ui, fA(ui) is a lower bound112

on the negation of ui derived from the evidence against ui, and113

tA(ui) + fA(ui) ≤ 1. The grade of membership of ui in the vague set114

A is bounded by a subinterval [tA(ui), 1 − fA(ui)] of [0, 1]. Simply ex-115

pressed, A(ui) = [tA(ui), 1 − fA(ui)].116

For every ui ∈ U, if A(ui) = [tA(ui), 1 − fA(ui)], then πA(ui) = 1 − 117

tA(ui) − fA(ui) indicates the vague degree of ui for the vague set A. 118

It expresses the measure of ui for the unknown information of the 119

vague set A. We call D(ui) = tA(ui) − fA(ui) the superior function for 120

the vague set A for the element ui, then D(ui) indicates the absolute 121

supporting degree of ui for the vague set A. 122

When U is discrete, U = {u1, u2, u3, . . . , un}, a vague set A can 123

be written as A = ∑n
i=1[tA(ui), 1 − fA(ui)]/ui, ui ∈ U, i = 1, 2, . . . , n; 124

when the universe of discourse U is continuous, a vague set A 125

can be written as A = ∫
U [tA(u), 1 − fA(u)]/u, u ∈ U . Specifically, U = 126∑n

i=1[1, 1]/ui, ∅ = ∑n
i=1[0, 0]/ui, ui ∈ U, i = 1, 2, . . . , n. 127

For example, let U be the universe of discourse, U = {6, 7, 8, 9, 10}. 128

A vague set “LARGE” of U may be defined by 129

LARGE = [0.1, 0.2]/6 + [0.3, 0.5]/7 + [0.6, 0.8]/8

+[0.9, 1]/9 + [1, 1]/10

If A, B ∈ V(U), u ∈ A, and if we let x and y be two vague values such 130

that x = [tx, 1 − fx], y = [ty, 1 − fy], where 0 ≤ tx ≤ 1 − fx ≤ 1, and 131

0 ≤ ty ≤ 1 − fy ≤ 1, then the following operations can be founded on 132

Gau [15]. 133

A = B iff tA(u) = tB(u) and fA(u) = fB(u),∀u ∈ U; 134

A⊆B iff tA(u) ≤ tB(u) and fA(u) ≥ fB(u), ∀u ∈ U; 135

x = y iff tx = ty and fx = fy; 136

x⊆y iff tx ≤ ty and fx ≥ fy. 137

Definition 1. Let x, y and z be three vague values such that x = 138

[tx, 1 − fx], y = [ty, 1 − fy] and z = [tz, 1 − fz]. A real function 139

i : [L] × [L] → [0, 1]

(x, y) 
→ i(x, y)

is called the inclusion measure of the vague values x to y, if i satisfies 140

the following properties: 141

(i1) i([1, 1], [0, 0]) = 0; 142

(i2) tx ≤ ty, fx ≥ fy ⇔ i(x, y) = 1; 143

(i3) If tx ≤ ty ≤ tz, and fx ≥ fy ≥ fz, then i(z, x) ≤ min(i(y, x), i(z, y)). 144

where L = [0, 1] and [L] is the set of all closed subintervals of the in- 145

terval [0, 1]. 146

Definition 2. For every A, B ∈ V(U), a real function 147

I : V (U) × V (U) → [0, 1]

(A, B) 
→ I(A, B)

is called the inclusion measure of the vague set A to B if I satisfies the 148

following properties: 149

(I1) I(X,∅) = 0; 150

(I2) A ⊆ B ⇔ I(A, B) = 1; 151

(I3) ∀A, B, C ∈ V(U), if A⊆B⊆C, then I(C, A) ≤ min(I(B, A), I(C, B)). 152

Definition 3 ([24]). A real function R: [0, 1] × [0, 1] → [0, 1] is 153

called a fuzzy implication (or implication function) if it is mono- 154

tone non-increasing in the first argument, i.e. R(x, z) ≥ R(y, z) for 155

x ≤ y and monotone non-decreasing in the second argument, i.e. 156

R(x, u) ≤ R(x, v) for u ≤ v, and satisfies the boundary conditions, 157

R(0, 0) = 1, R(1, 1) = 1 and R(1, 0) = 0. 158

Furthermore, we list some properties related to fuzzy implication. 159

(1) Neutrality of truth when R(1, t) = t,∀t ∈ [0, 1]; 160

(2) Identity principle when R(t, t) = 1,∀t ∈ [0, 1]; 161

(3) Ordering property when R(a, b) = 1, if and only if a ≤ b. 162

The Lukasiwicz implication function RLu(a, b) = (1 − a + b) ∧ 1 163

satisfies each of these properties in the above. 164

Definition 4. Let x, y and z be three vague values such that x = 165

[tx, 1 − fx], y = [ty, 1 − fy] and z = [tz, 1 − fz]. A real function 166
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