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a b s t r a c t

We mainly study the low-rank image recovery problem by proposing a bilinear low-rank coding
framework called Tensor Low-Rank Representation. For enhanced low-rank recovery and error correc-
tion, our method constructs a low-rank tensor subspace to reconstruct given images along row and col-
umn directions simultaneously by computing two low-rank matrices alternately from a nuclear norm
minimization problem, so both column and row information of data can be effectively preserved. Our
bilinear approach seamlessly integrates the low-rank coding and dictionary learning into a unified frame-
work. Thus, our formulation can be treated as enhanced Inductive Robust Principal Component Analysis
with noise removed by low-rank representation, and can also be considered as the enhanced low-rank
representation with a clean informative dictionary via low-rank embedding. To enable our method to
include outside images, the out-of-sample extension is also presented by regularizing the model to cor-
relate image features with the low-rank recovery of the images. Comparison with other criteria shows
that our model exhibits stronger robustness and enhanced performance. We also use the outputted bilin-
ear low-rank codes for feature learning. Two unsupervised local and global low-rank subspace learning
methods are proposed for extracting image features for classification. Simulations verified the validity
of our techniques for image recovery, representation and classification.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Vision data (e.g., images) and non-vision data in the real-world
emerging applications, such as face recognition [13,21,27,39],
robust alignment of images [26], and document retrieval, can usu-
ally be characterized by using high-dimensional attributes or fea-
tures. Also, plenty of real-world multimedia data, including
images, videos and documents, can also be characterized by
low-rank subspaces, so recent decade has witnessed lots of efforts
and increasing attention on the research of recovering
low-dimensional or low-rank structures from high-dimensional
data with important information in data preserved by feature
learning or low-rank coding. Representative works dedicated to
these topics include [1–11,15,26,33–38,41–46,50,56]. In this paper,
we mainly focus on the study on the bilinear low-rank coding for
image recovery, error correction and image representation.

One most representative low-rank recovery criterion is named
Robust Principal Component Analysis (RPCA) [3,8,9,16]. For a given
observed data matrix X ¼ x1; x2; . . . ; xN½ � 2 Rn�N corrupted by cer-
tain sparse errors E0, RPCA recovers X0ðX ¼ X0 þ E0Þ by solving
the following nuclear norm minimization problem:

Min
Y ;E

Yk k� þ c Ek k‘; Subj X ¼ Y þ E; ð1Þ

where �k k� is the nuclear norm of a matrix, i.e., the sum of singular

values of the matrix, �k k‘ is l1-norm ( �k k1Þ or l2;1-norm ( �k k2;1Þ to
characterize the sparse errors, and c is a positive weighting param-
eter. The minimizer Y� corresponds to the principal components of
X and is also the low-rank recovery to X0. Note that RPCA can well
address gross corruptions with large magnitude if only a fraction of
entries are corrupted [3,6]. But RPCA is a transductive model, so it
cannot handle new data [6]. Besides, RPCA implicitly assumes that
the underlying data structures lie in or lie near a single low-rank
subspace, but most real data are described by using a union of mul-
tiple subspaces [1,2], so the recovery of RPCA may be inaccurate in
reality. To enable RPCA for including outside data, Inductive Robust
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Principal Component Analysis (IRPCA) [6] was recently proposed by
seeking a low-rank projection U ¼ u1;u2; . . . ;un½ � 2 Rn�n to deal with
outside data. IRPCA solves the projection U and the principal com-
ponents Y ¼ y1; y2; . . . ; yN½ � from the following convex nuclear norm
based problem:

Min
U;E

Uk k� þ c Ek k‘; Subj X ¼ Y þ E; Y ¼ UX: ð2Þ

The original data can be recovered as U�X (or X � E�Þ by IRPCA.
Based on the learnt U, given data can be mapped onto the underly-
ing subspaces and the possible corruptions can be efficiently
removed [6]. Note that IRPCA performs recovery along column
direction of X, so row information of data is lost by IRPCA.

To well address mixed data with (grossly) corrupted observa-
tions, another low-rank criterion called Low-Rank Representation
(LRR) [1,2] was also recently proposed for subspace recovery, clus-
tering and segmentation. For subspace segmentation, LRR aims at
computing a low-rank representation V ¼ v1;v2; . . . ;vN½ � 2 RN�N

among all candidates that represent all data vectors as the linear
combination of bases in a given dictionary D. By setting X itself
as the dictionary (i.e., D ¼ XÞ, the convex optimization criterion
of LRR is defined as

Min
V ;E

Vk k� þ c Ek k‘; Subj X ¼ DV þ E; D ¼ X: ð3Þ

After obtaining the optimal solution V�; E�ð Þ, the original data is
recovered as X � E� (or XV�Þ. Different from IRPCA, LRR recovers or
segments given data along row direction, but column information
of given matrix is similarly lost by LRR. Note that LRR is also a
transductive criterion as RPCA, so it cannot handle new points effi-
ciently. As a result, both LRR and RPCA are inappropriate for the
practical applications requiring fast online computation [6]. For
image recovery and subspace segmentation, LRR applies the matrix
X itself as dictionary, so it requires that sufficient noiseless data is
available in dictionary (i.e., only a part of D is corrupted). But most
real data are contaminated by various errors, e.g., corruptions and
noise, so directly setting X itself as dictionary may be invalid and
may depress the robustness performance for subspace recovery
and segmentation [11,23].

To overcome the shortcomings of LRR and IRPCA for image
recovery, we incorporate the concept of tensor representation
[12,28,30] into the low-rank recovery and present a bilinear coding
criterion, Tensor Low-Rank Representation (TLRR), for enhancing the
robustness of image recovery to noise, corruptions or missing val-
ues in data. Compared with the existing studies, the contributions
of this paper are summarized as follows. First, to enhance the
robustness to noise and corruptions, and to well handle data with
missing values, our TLRR aims to reconstruct given images along
row and column directions at the same time by embedding data
onto a low-rank tensor subspace spanned by seeking a pair of
low-rank matrices alternately from a nuclear norm minimization
problem. Besides, TLRR exhibits a strong generalization power.

The modeling of TLRR seamlessly integrates the low-rank repre-
sentation and dictionary learning into a unified framework, that
is, it can perform simultaneous subspace recovery, error correction
and dictionary learning. As a result, when learning a low-rank pro-
jection to construct a clean informative dictionary, TLRR is consid-
ered as an ‘‘enhanced’’ version of IRPCA based on the noise and
corruptions removed data. Similarly, when learning the low-rank
representation for image recovery, TLRR is regarded as enhanced
LRR learning with trained low-rank informative dictionary. As a
consequence, the image recovery performance and the robustness
against noise, corruptions and missing values can be greatly
improved by our proposed bilinear TLRR model theoretically.
Second, we present an out-of-sample extension of TLRR for deal
with the outside images, since TLRR is essentially a transductive
criterion as LRR and RPCA. To enable such capability, we add a
Least Square (LS)-style [49] regularization term into the objective
function of TLRR to compute a projection for correlating features
with the low-rank recovery of images so that the bilinear
low-rank recovery of new test images can be directly obtained
by embedding them onto the projection. Third, we propose two
similarity preserving and global structure preserving low-rank
subspace learning methods by using the outputted bilinear
low-rank codes of TLRR as inputs for image feature extraction
and classification.

The paper is summarized as follows. Section 2 briefly reviews
the related work. Section 3 proposes the TLRR algorithm mathe-
matically. Subsequently, in Section 4 we present the
out-of-sample extension of bilinear TLRR for including outside
images. We in Section 5 discuss bilinear low-rank coding for sub-
space learning. Section 6 shows the settings and evaluates our
methods. Finally, the paper is concluded in Section 7. For easy to
follow the work, we first present the important notations and
abbreviations of algorithms in Table 1.

2. Related work

Most real-world data includes noise or corruptions, so recent
years have witnessed lots of efforts and increasing interests on
low-rank data representation and subspace recovery in the litera-
ture. In general, existing works can be roughly divided into two
categories. The first category mainly focuses on seeking the
low-rank representation for subspace segmentation, recovery and
clustering, for instance [1–3,6,7,11,19,36–38,42–44,50]. The other
category is mainly for low-rank representation by designing over-
complete dictionaries, such as [23,45].

In the first category, the representative criteria are RPCA [4],
IRPCA [6], LRR [1,2], Latent LRR (LatLRR) [11], and Fixed LRR
(FLRR) [43], etc. In addition, several researchers have suggested
effective extensions and enhanced modifications to the original
formulations. For example, P. Favaro et al. [45] proposed to enforce
the symmetric positive semidefinite constraint explicitly during

Table 1
Important notations and abbreviation of algorithms.

Notation Description Abbreviation Full name of algorithms

X Original data matrix RPCA [3] Robust Principal Component Analysis
xi The i-th sample of X IRPCA [6] Inductive Robust Principal Component Analysis
D Dictionary matrix LRR [1,2] Low-Rank Representation
E Sparse errors LatLRR [11] Latent Low-Rank Representation
U;V Low-rank codes matrix LRR-PSD [45] LRR with Positive Semi-Definite constraint

P; bP Embedding matrix FLRR [43] Fixed Low-Rank Representation

Y ; bY Low-rank recovery TLRR Tensor Low-Rank Representation

d Reduced dimension iTLRR Inductive Tensor Low-Rank Representation

WLR Similarity matrix L-LRSL Local Low-Rank Subspace Learning

�k kF Frobenius norm G-LRSL Global Low-Rank Subspace Learning
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