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Prediction on a numeric scale, i.e., regression, is one of the most prominent machine learning tasks with
various applications in finance, medicine, social and natural sciences. Due to its simplicity, theoretical
performance guarantees and successful real-world applications, one of the most popular regression tech-
niques is the k nearest neighbor regression. However, k nearest neighbor approaches are affected by the
presence of bad hubs, a recently observed phenomenon according to which some of the instances are sim-
ilar to surprisingly many other instances and have a detrimental effect on the overall prediction perfor-
mance. This paper is the first to study bad hubs in context of regression. We propose hubness-aware
nearest neighbor regression schemes. We evaluate our approaches on publicly available real-world data-
sets from various domains. Our results show that the proposed approaches outperform various other
regressions schemes such as kNN regression, regression trees and neural networks. We also evaluate
the proposed approaches in the presence of label noise because tolerance to noise is one of the most rel-
evant aspects from the point of view of real-world applications. In particular, we perform experiments
under the assumption of conventional Gaussian label noise and an adapted version of the recently pro-

posed hubness-proportional random label noise.

© 2015 Published by Elsevier B.V.

1. Introduction

Regression, i.e., prediction of a continuous target variable from a
set of observations, is one of the most prominent machine learning
tasks with various applications in engineering, finance, industry
and medicine, see e.g. [1-5]. Various regression techniques have
been developed in the last decades ranging from simple linear
and polynomial regression to more complex models, such as neural
networks [6,7] and support vector regression [8].

In many cases, not only the nominal dimensionality of the data
is high, but the same is true for the number of meaningful (or intrin-
sic) dimensions, although the later may vary from instance to
instance: for example, the medical records of a patient p may
involve the results of different examinations than the records of
another patient p’ (who may suffer from different diseases than
p). Therefore, making use of such data is not only difficult because
of its size, but also due to its complexity: without loss of essential
information, calculating the distance or similarity between
instances may already be rather challenging, while finding a

* Corresponding author.
E-mail addresses: buza@biointelligence.hu (K. Buza), alexandros.nanopoulos@
ku.de (A. Nanopoulos), nagy.gabor.i@gmail.com (G. Nagy).

http://dx.doi.org/10.1016/j.knosys.2015.06.010
0950-7051/© 2015 Published by Elsevier B.V.

reasonable vector representation of the data may be even more dif-
ficult. On the other hand, there is an ever-growing interest in using
such semi-structured data for prediction, which involves predic-
tion on a numeric scale, i.e., regression. Consequently, in this paper
we focus on regression techniques that only assume the presence
of an appropriate distance or similarity measure which may or
may not be based on the vector representation of the instances.

Despite the aforementioned variety of regression schemes, one
of the most popular techniques is the nearest neighbor regression.
While being intuitive, nearest neighbor regression is
well-understood from the point of view of theory, see e.g. [9-11]
and the references therein for an overview of the most important
theoretical results regarding the performance of nearest neighbor
regression. These theoretical results are also justified by empirical
studies: for example, in their recent paper, Stensbo-Smidt et al.
found that nearest neighbor regression outperforms model-based
prediction of star formation rates [12], while Hu et al. showed that
a k-nearest neighbor regression based model is able to estimate the
capacity of lithium-ion batteries [3].

We point out that most of the conventional regression schemes
were developed for vector data, i.e., under the assumption that the
data can be organized into a data table with well-defined dimen-
sionality, whereas in the aforementioned cases this assumption

10.1016/j.knosys.2015.06.010

Please cite this article in press as: K. Buza et al., Nearest neighbor regression in the presence of bad hubs, Knowl. Based Syst. (2015), http://dx.doi.org/

23
24
25
26
27
28
29
30

32
33
34
35
36
37
38

39

59
60
61
62
63
64
65
66
67
68
69
70

72
73
74

76
77
78
79
80
81


http://dx.doi.org/10.1016/j.knosys.2015.06.010
mailto:buza@biointelligence.hu
mailto:alexandros.nanopoulos@ku.de
mailto:alexandros.nanopoulos@ku.de
mailto:nagy.gabor.i@gmail.com
http://dx.doi.org/10.1016/j.knosys.2015.06.010
http://www.sciencedirect.com/science/journal/09507051
http://www.elsevier.com/locate/knosys
http://dx.doi.org/10.1016/j.knosys.2015.06.010
http://dx.doi.org/10.1016/j.knosys.2015.06.010

82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

132
133

134

136
137
138
139
140
141
142
143
144

KNOSYS 3185
18 June 2015

No. of Pages 11, Model 5G

2 K. Buza et al. / Knowledge-Based Systems xxx (2015) XxX—XxX

may be violated. However, nearest neighbor-models only require a
distance or similarity between the instances, which may be much
simpler to define than finding a suitable vector representation of
the data, see e.g. edit distances for time series, genetic sequences
or texts, such as dynamic time warping [13,14], Smith-
Watermann distance [15] or Levenshtein distance [16]. These dis-
tance measures work directly on the “raw” data (i.e., time series,
genetic sequences or texts respectively) without an intermediate
vector representation.

Machine learning in high dimensional data spaces is particu-
larly challenging due to the phenomena known under the umbrella
of the curse of dimensionality. One of the recently explored aspects
of the curse is the emergence of bad hubs, see e.g. [17-21].
Informally, hubs are instances that are similar to a surprisingly
high amount of other instances. Unfortunately, some of the hubs
are bad in the sort of sense that they may mislead classification
algorithms. While bad hubs are well-studied in case of classifica-
tion [22], instance selection [23]| and clustering [24], in context
of regression problems bad hubs have not been described yet.
Providing an analysis of the presence of bad hubs in regression
problems is not trivial because the original definition of bad hubs
assumes discrete class labels, however, in case of regression prob-
lems, the labels are continuous. Therefore, in order to study bad
hubs in context of regression, we need a novel approach.

In this paper, we focus on nearest neighbor regression and
study the presence of bad hubs in context of regression prob-
lems. Motivated by these observations, we propose
hubness-aware  nearest neighbor regression  schemes.
Subsequently, we evaluate our approach on publicly available
real-world datasets from various domains: prediction of yields
on the stock market, assessment of the severity of Parkinson’s
disease, estimation of the area of forest fires, prediction of the
number of comments that a blog post will receive and assess-
ment of wine quality. Our experimental results show that our
approach is favorable in all these domains. Additionally, we eval-
uate the proposed approaches in the presence of label noise
because, on the one hand, tolerance to noise is one of the most
relevant aspects from the point of view of real-world applica-
tions, on the other hand, the selection of appropriate noise mod-
els allow us to simulate the increased presence of bad hubs. In
particular, we perform experiments under the assumption of
two types of noise: we consider conventional Gaussian label
noise and an adapted version of the recently proposed
hubness-proportional random label noise [25]. This adaptation
is one of the minor contributions of the paper and it is necessary
because hubness-proportional random label noise was originally
introduced for classification problems. According to the best of
our knowledge, this is the first paper that studies the presence
of bad hubs in context of regression problems, and this is the
first paper that proposes hubness-aware regression schemes
and evaluates them both on real-world datasets and under var-
ious noise models.

2. Definitions and notations

A dataset D containing n instances is given. Instances are
denoted by x;, 1 < i < n. For each instance x; € D, the value of the
continuous target is given and it is denoted by y(x;). We say that
y(x;) is the label of instance x; and D is the training dataset. With
regression we mean the task of predicting (estimating) the label
of an instance X' ¢ D.

We propose a regression approach that is independent of the
representation of the instances, the only requirement is that dis-
tances can be defined between the instances. Therefore, we use
d(x;, x;) to denote the distance between two instances x; and x;.

Assume that we want to predict the label of an instance x’ ¢ D.
Nearest neighbor regression determines the k nearest neighbors of

X, ie., a subset N (x) of D so that

WP =k (1)
and

max d(x',x) < min d(x,x). (2)
XeNF (x) XeD\NF (x)

We may omit the upper index D, whenever it is unambiguous in
which dataset we search for the nearest neighbors of x'. Nearest
neighbor regression [26,27] estimates the value of the target as
the average of the labels of the nearest neighbors:

) =5 S yw). 3)

X EN(X)

3. Bad hubs in regression problems

We note that the k nearest neighbor relationship is asymmetric:
while each instance x € D has k nearest neighbors, an instance
X' € D does not necessarily appear k-times as one of the k nearest
neighbors of other instances. This is illustrated in Fig. 1 for k = 1.
In order to keep the example simple, we consider
two-dimensional vector data, therefore, instances correspond to
points of the plane. In Fig. 1, instances are denoted by circles.
There is a directed edge from each instance to its first nearest
neighbor. While each instance has exactly one first nearest neigh-
bor, i.e., the number of outgoing edges is exactly one for each
instance; how many times an instance appears as the first nearest
neighbor of other instances, i.e., the number of incoming edges, is
not necessarily one. As one can see, some of the instances never
appear as nearest neighbors of others and there is an instance that
appears as the first nearest neighbor of three other instances: the
integer number next to each instance shows how many times it
appears as the first nearest neighbor of others.

Generally, we use Ny (x) to denote how many times the instance
x € D appears as one of the k nearest neighbors of other instances
of D. It is easy to see that the expected value of N (x) is E[N,(x)] = k,
however, the actual value of Ny (x) varies from instance to instance.
While considering k nearest neighbor models, Ny(x) can be seen as
the measure of how influential is the instance x. As it was shown in
previous works, see e.g. [17,18,23], in many cases, the distribution
of Ni(x) is substantially skewed to the right, i.e., there are a few
instances with extraordinarily high N (x) values. Usually, instances
having surprisingly high Ny (x) are called hubs, while instance with
exceptionally low N, (x) are called anti-hubs. More precisely, we say
that an instance x is a hub, if Ny(x) > 2k; while an instance x is an
anti-hub if Ni(x) = 0. The phenomenon that Ni(x) is skewed is
called hubness and it is often quantified by the third standardized
moment (skewness) of the distribution of Ny (x).

In case of classification, we say that an instance x is a bad k
nearest neighbor of another instance X' if x is one of the k-nearest
neighbors of ¥ and the both instances have different class labels.
Consequently, in case of classification, bad k-occurrence BNy (x) of
an instance x was introduced to measure how many times an
instance x appears as bad nearest neighbor of other instances.
Similarly to the distribution of Ni(x), the distribution of BN(x)
was shown to be substantially skewed in case of
high-dimensional data.

Similar observations can be made for high-dimensional data
associated with numerical prediction tasks. As an example, in the
left of Fig. 2 we show the distribution of Ny (x) for the Financial
Tweets Data using k = 10 and the Euclidean distance. The dataset

10.1016/j.knosys.2015.06.010

Please cite this article in press as: K. Buza et al., Nearest neighbor regression in the presence of bad hubs, Knowl. Based Syst. (2015), http://dx.doi.org/

145
146

147
148

150

151
152

154

155
156
157

158
159

161

162

163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207


http://dx.doi.org/10.1016/j.knosys.2015.06.010
http://dx.doi.org/10.1016/j.knosys.2015.06.010

Download English Version:

https://daneshyari.com/en/article/6862459

Download Persian Version:

https://daneshyari.com/article/6862459

Daneshyari.com


https://daneshyari.com/en/article/6862459
https://daneshyari.com/article/6862459
https://daneshyari.com/

