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23Prediction on a numeric scale, i.e., regression, is one of the most prominent machine learning tasks with
24various applications in finance, medicine, social and natural sciences. Due to its simplicity, theoretical
25performance guarantees and successful real-world applications, one of the most popular regression tech-
26niques is the k nearest neighbor regression. However, k nearest neighbor approaches are affected by the
27presence of bad hubs, a recently observed phenomenon according to which some of the instances are sim-
28ilar to surprisingly many other instances and have a detrimental effect on the overall prediction perfor-
29mance. This paper is the first to study bad hubs in context of regression. We propose hubness-aware
30nearest neighbor regression schemes. We evaluate our approaches on publicly available real-world data-
31sets from various domains. Our results show that the proposed approaches outperform various other
32regressions schemes such as kNN regression, regression trees and neural networks. We also evaluate
33the proposed approaches in the presence of label noise because tolerance to noise is one of the most rel-
34evant aspects from the point of view of real-world applications. In particular, we perform experiments
35under the assumption of conventional Gaussian label noise and an adapted version of the recently pro-
36posed hubness-proportional random label noise.
37� 2015 Published by Elsevier B.V.
38
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41 1. Introduction

42 Regression, i.e., prediction of a continuous target variable from a
43 set of observations, is one of the most prominent machine learning
44 tasks with various applications in engineering, finance, industry
45 and medicine, see e.g. [1–5]. Various regression techniques have
46 been developed in the last decades ranging from simple linear
47 and polynomial regression to more complex models, such as neural
48 networks [6,7] and support vector regression [8].
49 In many cases, not only the nominal dimensionality of the data
50 is high, but the same is true for the number of meaningful (or intrin-
51 sic) dimensions, although the later may vary from instance to
52 instance: for example, the medical records of a patient p may
53 involve the results of different examinations than the records of
54 another patient p0 (who may suffer from different diseases than
55 p). Therefore, making use of such data is not only difficult because
56 of its size, but also due to its complexity: without loss of essential
57 information, calculating the distance or similarity between
58 instances may already be rather challenging, while finding a

59reasonable vector representation of the data may be even more dif-
60ficult. On the other hand, there is an ever-growing interest in using
61such semi-structured data for prediction, which involves predic-
62tion on a numeric scale, i.e., regression. Consequently, in this paper
63we focus on regression techniques that only assume the presence
64of an appropriate distance or similarity measure which may or
65may not be based on the vector representation of the instances.
66Despite the aforementioned variety of regression schemes, one
67of the most popular techniques is the nearest neighbor regression.
68While being intuitive, nearest neighbor regression is
69well-understood from the point of view of theory, see e.g. [9–11]
70and the references therein for an overview of the most important
71theoretical results regarding the performance of nearest neighbor
72regression. These theoretical results are also justified by empirical
73studies: for example, in their recent paper, Stensbo-Smidt et al.
74found that nearest neighbor regression outperforms model-based
75prediction of star formation rates [12], while Hu et al. showed that
76a k-nearest neighbor regression based model is able to estimate the
77capacity of lithium-ion batteries [3].
78We point out that most of the conventional regression schemes
79were developed for vector data, i.e., under the assumption that the
80data can be organized into a data table with well-defined dimen-
81sionality, whereas in the aforementioned cases this assumption
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82 may be violated. However, nearest neighbor-models only require a
83 distance or similarity between the instances, which may be much
84 simpler to define than finding a suitable vector representation of
85 the data, see e.g. edit distances for time series, genetic sequences
86 or texts, such as dynamic time warping [13,14], Smith–
87 Watermann distance [15] or Levenshtein distance [16]. These dis-
88 tance measures work directly on the ‘‘raw’’ data (i.e., time series,
89 genetic sequences or texts respectively) without an intermediate
90 vector representation.
91 Machine learning in high dimensional data spaces is particu-
92 larly challenging due to the phenomena known under the umbrella
93 of the curse of dimensionality. One of the recently explored aspects
94 of the curse is the emergence of bad hubs, see e.g. [17–21].
95 Informally, hubs are instances that are similar to a surprisingly
96 high amount of other instances. Unfortunately, some of the hubs
97 are bad in the sort of sense that they may mislead classification
98 algorithms. While bad hubs are well-studied in case of classifica-
99 tion [22], instance selection [23] and clustering [24], in context

100 of regression problems bad hubs have not been described yet.
101 Providing an analysis of the presence of bad hubs in regression
102 problems is not trivial because the original definition of bad hubs
103 assumes discrete class labels, however, in case of regression prob-
104 lems, the labels are continuous. Therefore, in order to study bad
105 hubs in context of regression, we need a novel approach.
106 In this paper, we focus on nearest neighbor regression and
107 study the presence of bad hubs in context of regression prob-
108 lems. Motivated by these observations, we propose
109 hubness-aware nearest neighbor regression schemes.
110 Subsequently, we evaluate our approach on publicly available
111 real-world datasets from various domains: prediction of yields
112 on the stock market, assessment of the severity of Parkinson’s
113 disease, estimation of the area of forest fires, prediction of the
114 number of comments that a blog post will receive and assess-
115 ment of wine quality. Our experimental results show that our
116 approach is favorable in all these domains. Additionally, we eval-
117 uate the proposed approaches in the presence of label noise
118 because, on the one hand, tolerance to noise is one of the most
119 relevant aspects from the point of view of real-world applica-
120 tions, on the other hand, the selection of appropriate noise mod-
121 els allow us to simulate the increased presence of bad hubs. In
122 particular, we perform experiments under the assumption of
123 two types of noise: we consider conventional Gaussian label
124 noise and an adapted version of the recently proposed
125 hubness-proportional random label noise [25]. This adaptation
126 is one of the minor contributions of the paper and it is necessary
127 because hubness-proportional random label noise was originally
128 introduced for classification problems. According to the best of
129 our knowledge, this is the first paper that studies the presence
130 of bad hubs in context of regression problems, and this is the
131 first paper that proposes hubness-aware regression schemes
132 and evaluates them both on real-world datasets and under var-
133 ious noise models.

134 2. Definitions and notations

135 A dataset D containing n instances is given. Instances are
136 denoted by xi;1 6 i 6 n. For each instance xi 2 D, the value of the
137 continuous target is given and it is denoted by yðxiÞ. We say that
138 yðxiÞ is the label of instance xi and D is the training dataset. With
139 regression we mean the task of predicting (estimating) the label
140 of an instance x0 R D.
141 We propose a regression approach that is independent of the
142 representation of the instances, the only requirement is that dis-
143 tances can be defined between the instances. Therefore, we use
144 dðxi; xjÞ to denote the distance between two instances xi and xj.

145Assume that we want to predict the label of an instance x0 R D.
146Nearest neighbor regression determines the k nearest neighbors of
147x0, i.e., a subset NDk ðx0Þ of D so that
148

NDk ðx0Þ
���

��� ¼ k ð1Þ 150150

151and
152

max
x2NDk ðx0Þ

dðx0; xÞ 6 min
x2DnNDk ðx0 Þ

dðx0; xÞ: ð2Þ
154154

155We may omit the upper index D, whenever it is unambiguous in
156which dataset we search for the nearest neighbors of x0. Nearest
157neighbor regression [26,27] estimates the value of the target as
158the average of the labels of the nearest neighbors:
159

ŷðx0Þ ¼ 1
k

X
xj2N kðx0 Þ

yðxjÞ: ð3Þ
161161

1623. Bad hubs in regression problems

163We note that the k nearest neighbor relationship is asymmetric:
164while each instance x 2 D has k nearest neighbors, an instance
165x0 2 D does not necessarily appear k-times as one of the k nearest
166neighbors of other instances. This is illustrated in Fig. 1 for k ¼ 1.
167In order to keep the example simple, we consider
168two-dimensional vector data, therefore, instances correspond to
169points of the plane. In Fig. 1, instances are denoted by circles.
170There is a directed edge from each instance to its first nearest
171neighbor. While each instance has exactly one first nearest neigh-
172bor, i.e., the number of outgoing edges is exactly one for each
173instance; how many times an instance appears as the first nearest
174neighbor of other instances, i.e., the number of incoming edges, is
175not necessarily one. As one can see, some of the instances never
176appear as nearest neighbors of others and there is an instance that
177appears as the first nearest neighbor of three other instances: the
178integer number next to each instance shows how many times it
179appears as the first nearest neighbor of others.
180Generally, we use NkðxÞ to denote how many times the instance
181x 2 D appears as one of the k nearest neighbors of other instances
182of D. It is easy to see that the expected value of NkðxÞ is E½NkðxÞ� ¼ k,
183however, the actual value of NkðxÞ varies from instance to instance.
184While considering k nearest neighbor models, NkðxÞ can be seen as
185the measure of how influential is the instance x. As it was shown in
186previous works, see e.g. [17,18,23], in many cases, the distribution
187of NkðxÞ is substantially skewed to the right, i.e., there are a few
188instances with extraordinarily high NkðxÞ values. Usually, instances
189having surprisingly high NkðxÞ are called hubs, while instance with
190exceptionally low NkðxÞ are called anti-hubs. More precisely, we say
191that an instance x is a hub, if NkðxÞ > 2k; while an instance x is an
192anti-hub if NkðxÞ ¼ 0. The phenomenon that NkðxÞ is skewed is
193called hubness and it is often quantified by the third standardized
194moment (skewness) of the distribution of NkðxÞ.
195In case of classification, we say that an instance x is a bad k
196nearest neighbor of another instance x0 if x is one of the k-nearest
197neighbors of x0 and the both instances have different class labels.
198Consequently, in case of classification, bad k-occurrence BNkðxÞ of
199an instance x was introduced to measure how many times an
200instance x appears as bad nearest neighbor of other instances.
201Similarly to the distribution of NkðxÞ, the distribution of BNkðxÞ
202was shown to be substantially skewed in case of
203high-dimensional data.
204Similar observations can be made for high-dimensional data
205associated with numerical prediction tasks. As an example, in the
206left of Fig. 2 we show the distribution of NkðxÞ for the Financial
207Tweets Data using k ¼ 10 and the Euclidean distance. The dataset
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