
Query rewriting under query refinements

Tassos Venetis, Giorgos Stoilos ⇑, Giorgos Stamou
School of Electrical and Computer Engineering, National Technical University of Athens, Iroon Polytexneiou 9, 15780 Zografou, Greece

a r t i c l e i n f o

Article history:
Received 10 May 2013
Received in revised form 9 September 2013
Accepted 19 October 2013
Available online 5 November 2013

Keywords:
Ontologies
Description logics
Query rewriting
Query refinement
DL-Lite
EL

a b s t r a c t

Ontologies expressed in description logics or extensions of datalog are gradually used for describing the
domain of many research and industrial strength applications. They provide a formal semantically rich
and data-independent layer over which user queries can be posed. A prominent technique for query
answering in ontology-based applications is query rewriting, where the given user query Q and ontology
O are transformed into a (datalog) program R that captures the answers of Q over O and every database
D. In realistic scenarios it is quite often the case that users refine their original query by adding or remov-
ing constraints until they produce a final one. In such scenarios, however, all existing systems would
compute a new rewriting Ri for each refined query Qi from scratch, discarding any information possibly
computed previously. In this paper we study the problem of computing a rewriting for a query Q0 which
is a ‘‘refinement’’ of a query Q by exploiting as much as possible information possibly computed previ-
ously for Q. We investigate whether such information is usable when computing a rewriting for Q0
and present detailed algorithms. Finally, we have implemented all proposed algorithms and conducted
an extensive experimental evaluation.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The use of ontologies in research as well as in industrial
strength applications is gradually gaining momentum [21,26,33].
In such scenarios the data reside in secondary data management
systems while ontologies provide a formal specification of the
intentional level (knowledge/schema) of the application domain.
Then, access to the data is performed via conjunctive queries
(CQs) and the computed answers reflect both the stored data as
well as the knowledge in the ontology providing so-called Ontol-
ogy Based Data Access (OBDA) [34]. Ontologies also play an impor-
tant role in a number of different scenarios like data integration
[7,22], biomedical applications [15,12], and more.

An important family of formalisms for constructing ontologies,
primary due to the fact that they constitute the logical underpin-
nings of the Web Ontology Languages OWL [19] and OWL 2 [11]
are Description Logics (DLs) [3]. Other prominent ontology lan-
guages motivated mostly from the area of deductive databases
are fragments of Datalog± [6]. Query answering over such ontology
languages has extensively been studied in the literature [23,14,29]
and today there exist languages that are specifically purposed for
efficient data access. Prominent examples are DL-Lite [8] and EL
[4], which constitute the logical underpinnings of OWL 2 QL [25]
and OWL 2 EL [25], respectively.

An important approach for query answering in these languages
is via a technique called query rewriting [8,2,32]. According to this
technique a query Q and an ontology O are transformed into a pro-
gram R, typically a datalog program called a rewriting, such that
the answers of R over any input data D (discarding the ontology)
are precisely the answers of Q over D and O. Such an approach
to query answering is interesting from a practical perspective be-
cause after computing Q the problem of query answering can be
delegated to efficient and scalable (deductive) database and datal-
og evaluation systems by either directly evaluating R using off-
the-shelf systems [13], by implementing customised engines
[27], or by integratingR in an optimal way into data saturation en-
gines [38].

In the last years many algorithms and systems for computing
rewritings have been presented, such as QuOnto [1], Requiem
[31], Presto [37], Nyaya [16], Quest [35], Rapid [10], IQAROS [41],
and Clipper [13]. All of them will compute for a given fixed query
a rewriting by applying (usually in a brute-force manner) a certain
set of rewriting rules discarding any information possibly com-
puted for previously processed queries. However, it is quite often
the case that user queries alter their initial queries producing
new ones which have small differences [30,20]. Consequently, a
query can be refined several times until the user (possibly) finds
the intended information.

For example, a user might initially ask to retrieve from a student
database all those students that take a specific course using the fol-
lowing conjunctive query:

0950-7051/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.knosys.2013.10.020

⇑ Corresponding author. Tel.: +30 210 7722521.
E-mail addresses: avenet@image.ece.ntua.gr (T. Venetis), gstoil@image.ece.

ntua.gr (G. Stoilos), gstam@cs.ntua.gr (G. Stamou).

Knowledge-Based Systems 56 (2014) 36–48

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier .com/locate /knosys

http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2013.10.020&domain=pdf
http://dx.doi.org/10.1016/j.knosys.2013.10.020
mailto:avenet@image.ece.ntua.gr
mailto:gstoil@image.ece.ntua.gr
mailto:gstoil@image.ece.ntua.gr
mailto:gstam@cs.ntua.gr
http://dx.doi.org/10.1016/j.knosys.2013.10.020
http://www.sciencedirect.com/science/journal/09507051
http://www.elsevier.com/locate/knosys

StudentðxÞ ^ takesCðx; yÞ ! QAðxÞ

where x; y are variables that need to be matched to actual students
and courses from the database, respectively, while Student is a
concept atom (unary predicate) and takesC is a role atom (binary
predicate). Moreover, the predicate QA, called head of the query,
specifies which matches should be returned to the user. In this
query, only the matched students would be returned.

Subsequently, the user might desire to also retrieve the course
that each student takes, hence posing the following query:

GStudentðxÞ ^ takesCðx; yÞ ! QAðx; yÞ

where now variable y also appears in the predicate QA. Yet, our
hypothetical user might want to further refine the query and
retrieve all those that take a course without necessarily being
students, hence, posing the following query:

takesCðx; yÞ ! QAðx; yÞ

Finally, he/she can again relax the constrains and retrieve only the
people that take a course:

takesCðx; yÞ ! QAðxÞ

In our previous work [40,41] we have studied the problem of
computing a rewriting for queries that have been refined by
extending them with new atoms. More precisely, given a DL-Lite
obtology O, a query Q, a rewriting R computed for O and Q and
a new atom a with which the user wants to ‘‘extend’’ Q, we have
studied how to compute a rewriting for the extended query by
reusing as much as possible the information that has been
pre-computed in R. Our study gave rise to a novel query rewriting
system based on incremental processing of the query atoms and
experimental evaluation showed that the new algorithm is
currently one of the most efficient ones.

In the current paper we study all other types of refinements as
illustrated previously in our running example. More precisely, for
an ontology O, a query Q, and a rewriting R possibly computed
previously for Q and O we study how to compute a rewriting for
a new query that is obtained from Q by removing some specific
atom of Q, or by removing some of the head variable of Q, or by
extending its head variables with new ones, again by exploiting
as much as possible the information in previously computed
rewriting R.

To the best of our knowledge there exist no previous study of
the above problems in the presence of ontologies. A related prob-
lem studied in the field of databases is view adaptation [18,24],
where the problem is to compute the materialisation of a re-defined
materialised view. However, in both works, the focus is in updating
the data (the materialisation of the view) and, moreover, there are
no database constraints (ontological axioms) present.

The rest of the paper is organised as follows. In Section 2 we
recapitulate all the necessary terminology as well as relevant def-
initions that will help us with the rest of the paper. Subsequently,
in Sections 3–5, we study the aforementioned refinement prob-
lems. More precisely, in Section 3 we study query rewriting when
some head variables have been removed; in Section 4 we study
query rewriting when new variables have been added to the head
of the current query; and finally, in Section 5 we study query
rewriting when an atom from the query has been removed. For
each studied problem we present motivating examples, detailed
algorithms, and proofs. Subsequently, in Section 6 we study for
each refinement problem the possiblity of some optimisations.
Next, in Section 7 we present two implementations of all our algo-
rithms, one using the system Rapid and one using Requiem. We
also present results of a detailed experimental evaluation compar-
ing them against the classical Rapid and Requiem implementation.
Finally, in Section 8 we conclude the paper.

2. Preliminairies

2.1. Existential rules

We use standard notions of (function-free) term, variable, sub-
stitution, ground atom, formula, and entailment (denoted as �)
from First-Order Logic [9]. An instance I is a finite set of ground
atoms. For a finite set of atoms fa1; . . .ang, we defineV
fa1; . . .ang to be the formula a1 ^ . . . ^ an. For a an atom and r

a substitution, the result of applying r to a is denoted as ar. Also,
every substitution r induces a directed graph G ¼ hV ; Ei, where
t 2 V iff t is a term in r and hx; ti 2 E iff x#t 2 r.

A concept atom is of the form AðtÞ with A an atomic concept and
t a term. A role atom is of the form Rðt; t0Þ for R an atomic role, and
t; t0 terms. An existential rule r (or just rule) [5,6], often called axiom
or clause, is a sentence of the form:

8~x:8~z:½/ð~x;~zÞ ! 9~y:wð~x;~yÞ�

where /ð~x;~zÞ and wð~x;~yÞ are conjuncts of function-free atoms and
~x; ~y and ~z are pair-wise disjoint. Formula / is the body, formula w
is the head and universal quantifiers are often omitted. Note that,
by definition, existential rules are safe-that is, all variables in ~x
occur both in the body and the head. If~y is empty, the rule is called
datalog. For r a datalog rule, we denote with bdðrÞ the set of body
atoms of r, and by hdðrÞ the set of head atoms of r. A datalog program
is a finite set of datalog rules.

Many popular Horn ontology languages, such as DL-LiteR [8]
and ELHI [32] as well as Datalog± [6] can be captured by existen-
tial rules. So, in the context of this paper, we will define an ontology
O as a finite set of existential rules.

2.2. Queries

A query Q is a finite set of sentences containing a distinct query
predicate QA in the head atom. A tuple of constants ~a is a certain
answer to Q w.r.t. ontology O and instance I if the arity of~a agrees
with the arity of QA and O [I [Q � Q Að~aÞ. We denote with
certðQ;O [IÞ all answers to Q w.r.t. O [I. A query Q is a union of
conjunctive queries (UCQ) if it is a set of datalog rules containing
QA in the head but not in the body. A UCQ Q is called a conjunctive
query (CQ) if it has exactly one rule; in this case with Q we denote
the single rule in the CQ.

All the variables that appear in the head of a conjunctive query
are called distinguished (or answer) and are denoted by avarðQÞ.
For an atom a we use varðaÞ to denote the set of its variables;
var can be extended to queries in the obvious way. Let
/ð~x;~zÞ ! Q Að~xÞ be a CQ, where~x ¼ ðx1; . . . ; xnÞ and let also a vector
~y ¼ ðy1; . . . ; ymÞ of variables. Then, by /ð~x;~zÞ ! Q Að~x;~yÞ we denote
the new query /ð~x;~zÞ ! Q Að~zÞ, where~z ¼ ðx1; . . . ; xn; y1; . . . ; ymÞ.

Let Q ¼ /ð~x;~zÞ ! Q Að~xÞ, where~x ¼ ðx1; . . . ; xnÞ. Let also j1; . . . ; jm

be a non-empty sequence of positive integers such that
n P maxfj1; . . . ; jmg. The projection of Q over j1; . . . ; jm, denoted by
pj1 ;...;jmðQÞ, is the new query /ð~x;~zÞ ! Q Að~wÞ where
~w ¼ ðxj1 ; . . . ; xjm Þ, and pj1 ;...;jm is called a projection operator.

Given CQs Q1;Q2 with distinguished variables ~x and ~y, respec-
tively, we say that Q2 subsumes Q1 (or that Q2 is a subsumer of
Q1), if there exists a substitution r from varðQ2Þ to varðQ1Þ such
that every atom in Q2r also appears in Q1. For a rewriting R we
say that Q1 is redundant in R if a different query Q2 2 R exists that
subsumes it; otherwise it is called non-redundant in R. Finally, Q1

is called non-subsumer if it does not subsume any other query inR.
A CQ Q is called connected if, for all terms t; t0, there exists a se-

quence t1; . . . ; tn such that t1 ¼ t; tn ¼ t0 and, for all 1 6 i < n, there
exists a role R such that Rðti; tiþ1Þ 2 Q. Without loss of generality,
we assume that CQs are connected.

T. Venetis et al. / Knowledge-Based Systems 56 (2014) 36–48 37

Download English Version:

https://daneshyari.com/en/article/6862600

Download Persian Version:

https://daneshyari.com/article/6862600

Daneshyari.com

https://daneshyari.com/en/article/6862600
https://daneshyari.com/article/6862600
https://daneshyari.com

