Knowledge-Based Systems 54 (2013) 103-113

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

A hybrid metaheuristic for the cyclic antibandwidth problem

@ CrossMark

Manuel Lozano **, Abraham Duarte °, Francisco Gortazar ”, Rafael Marti €

2 Department of Computer Science and Artificial Intelligence, University of Granada, Granada 18071, Spain
b Department of Computer Science, University Rey Juan Carlos, Madrid, Spain
©Department of Statistics and Operations Research, University of Valencia, Valencia, Spain

ARTICLE INFO ABSTRACT

Article history:

Received 31 January 2013

Received in revised form 19 July 2013
Accepted 18 August 2013

Available online 12 September 2013

In this paper, we propose a hybrid metaheuristic algorithm to solve the cyclic antibandwidth problem.
This hard optimization problem consists of embedding an n-vertex graph into the cycle C,, such that
the minimum distance (measured in the cycle) of adjacent vertices is maximized. It constitutes a natural
extension of the well-known antibandwidth problem, and can be viewed as the dual problem of the cyclic
bandwidth problem.

Our method hybridizes the artificial bee colony methodology with tabu search to obtain high-quality
solutions in short computational times. Artificial bee colony is a recent swarm intelligence technique
based on the intelligent foraging behavior of honeybees. The performance of this algorithm is basically
determined by two search strategies, an initialization scheme that is employed to construct initial solu-
tions and a method for generating neighboring solutions. On the other hand, tabu search is an adaptive
memory programming methodology introduced in the eighties to solve hard combinatorial optimization
problems. Our hybrid approach adapts some elements of both methodologies, artificial bee colony and
tabu search, to the cyclic antibandwidth problem. In addition, it incorporates a fast local search procedure
to enhance the local intensification capability. Through the analysis of experimental results, the highly
effective performance of the proposed algorithm is shown with respect to the current state-of-the-art
algorithm for this problem.
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1. Introduction

The cyclic antibandwidth (CAB) problem consists of embedding
an n-vertex graph into the cycle G, such that the minimum dis-
tance (measured in the cycle) of adjacent vertices is maximized
[25] and is known as a NP-hard problem [32]. The CAB problem
has been exactly solved for some specific classes of graphs like
paths [40], cycles [40], two dimensional meshes (Cartesian product
of two paths), tori (Cartesian product of two cycles), and asymp-
totic results are obtained for hypercube graphs [32]. Dobrev et al.
[6] extended these results to the case of Hamming graphs (Carte-
sian product of d-complete graphs). However, because this prob-
lem is NP-hard, for most instances one must resort to
metaheuristics to obtain near optimal solutions within reasonable
time. To the best of our knowledge, only one of such optimization
techniques has been presented for finding the cyclic antiband-
width of general graphs, the memetic algorithm by Bansal and
Srivastava [4]. The great interest to develop more efficient optimi-
zation algorithms for solving the CAB problem led us to propose a
hybrid metaheuristic that combines the effective artificial bee
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colony methodology (ABC) [17,18] with tabu search (TS) [13],
and that also integrates a fast local search routine where the neigh-
borhood is visited in an intelligent way.

The ABC algorithm is a new population-based metaheuristic ap-
proach inspired by the intelligent foraging behavior of honeybee
swarm. In essence, it implements memory structures based on
the analogy with a bee population. Inspired by the types of bees
and their different behavior this methodology considers different
elements in the algorithm. In particular, it consists of three essen-
tial components: food source positions, nectar-amount and three
honeybee classes (employed bees, onlookers and scouts). Each food
source position represents a feasible solution for the problem un-
der consideration. The nectar-amount for a food source represents
the quality of such solution (represented by an objective function
value). Each bee-class symbolizes a particular operation for gener-
ating new candidate food source positions. Specifically, employed
bees search the food around the food source in their memory;
meanwhile they pass their food information to onlooker bees. On-
looker bees tend to select good food sources from those found by
the employed bees, and then they search for food around the se-
lected source. Scout bees are translated from a few employed bees,
which abandon their food sources and search new ones. We should
remark that previous studies on bee algorithms showed that they
provide efficiency in solving optimization problems [43].
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From an algorithmic point of view, we can say that ABC is a pop-
ulation-based method with memory structures. Although this
methodology has been recently proposed [17], the use of memory
structures in optimization algorithms can be traced back to 1986
when Glover [12] introduced the TS methodology. Genetic algo-
rithms (GAs) probably constitute one of the most successful mem-
ory-less methods based on semi-random sampling. It is a
population based methodology proposed in the seventies in which
solutions are selected from a population according to their fitness,
to form a new population by means of some operators inspired by
the natural evolution. From this perspective, if we focus on the
algorithm elements, we can view ABC as a hybrid metaheuristic
combining the elements of population based methods, such as
GAs, and memory-based methods, such as TS. In this paper, we ex-
plore this hybrid perspective taking some advanced TS elements
(such as the ejection chains) and integrating them in an population
based procedure.

The rest of this paper is organized as follows. Section 2 intro-
duces the CAB problem in detail. Section 3 gives a brief overview
of the ABC algorithm and TS. Section 4 describes our hybrid ABC
approach for the CAB problem. Section 5 provides an analysis of
the performance of the proposed ABC and a comparison with the
existing literature. Finally, Section 6 contains a summary of results
and conclusions.

2. The cyclic antibandwidth problem

Let G(V,E) be an undirected and unweighted graph, where V rep-
resents the set of vertices (with |V| = n) and E represents the set of
edges (with |[E| = m). A labeling ¢ of the vertices of G is a bijective
function from V to the set of integers {1, ..., n} where each vertex
veV receives a unique label ¢(v)e{1,...,n}. A circular
arrangement of a labeling, simply called circular labeling, arranges
the vertices of the graph in a cycle C, where the last vertex (the
one with label n) is next to the first vertex (the one with label 1).
Given a circular labeling ¢, let us define the clockwise distance d*
(u,v) = |o(u) — @(v)| with (u, v) € E and, similarly the counterclock-
wise distance d~(u,v) =n — |@(u) — ¢(v)| with (u, ) € E. Then, for a
given circular labeling ¢, the cyclic antibandwidth of G, referred
to as CAB(G, @), is computed as follows:

CAB(G, @) = &T}}i)&{d*(uy v),d (u,v)}. (1)

The CAB problem consists of maximizing the value of CAB(G, ¢) over
the set IT of all possible labelings:

CAB(G) = maxCAB(G, ¢). ()
pe

Note that in optimization terms, any labeling ¢ of G is a solution of
the CAB problem stated in (2), with an objective function value, sim-
ply called value or CAB(G, ¢), defined in (1). The optimal solution(s) is
therefore the labeling, or labelings, with maximum value.

Fig. 1-left shows an example of a graph G with 8 vertices and 8
edges. Fig. 1-right shows a circular labeling ¢ of G, arranging the
vertices in a cycle. Additionally, clockwise (d*) and counterclock-
wise (d~) distances for each edge are shown in Table 1. In particu-
lar, each row of this table reports the distance between each pair of
adjacent vertices (those joined with an edge). For example, the
clockwise distance between vertex A and B is d"(A,B)=|p(A)
— @(B)| =|7 — 8| = 1. Similarly, the counterclockwise distance be-
tween these two vertices is d (AB)=8 — |p(A) — @(B)|=8 —
|7 —8|=7. In order to compute CAB(G,¢), we evaluate d* and
d~ for the remaining 7 edges (shown in Table 1), reporting the
minimum of all of them. Therefore, CAB(G, ¢) = 1.

CAB is a natural extension of the antibandwidth problem [3,7].
Although these two optimization problems are related, we should
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Fig. 1. A graph and a circular labeling layout.

Table 1

Clockwise and counterclockwise distances for the graph depicted in Fig. 1.
d* d-
d'(AB)=7-8|=1 d (AB)=8-|7-8|=7
d*(B,C)=18 -1|=7 d(B,C)=8-18-1|=1
d*(C,D)=]1-6|=5 d (C,D)=8-11-6|=3
d(CE)=[1-2|= d (CE)=8-1-2|=7
d*(E,F)=12-5|=3 d (EF)=8—-|2-5|=5
d*(F,G)=|5-3|=2 d (F,G)=8-15-3|=6
d'(F,H)=15—4|=1 d (FH)=8—1|5-4|=7
d*(GH)=|3 - 4|= d (GH)=8 -3 -4|=7

not expect a method developed for the former problem to perform
well on the latter. We illustrate this fact by considering the exam-
ple shown in Fig. 2, which corresponds to a caterpillar Ps 4 graph. A
caterpillar Py, 5, is constructed using the path P,, and n; copies of
the path P,,, where each vertex i in P,, is connected to the first ver-
tex of the i-th copy of the path P,,. For such instance we apply the
RBFS constructive procedure by Bansal and Srivastava [4] to gener-
ate 10° labelings (solutions) and compute for each one the objec-
tive function value for the cyclic antibandwidth (CAB) according
to (1), and the objective function value of the antibandwidth prob-
lem (AB) according to Duarte et al. [7]. The correlation between
both values computed over the 10° solutions is rather small
(r=0.13). In addition, the labeling with maximum AB value, out
of the 10° generated, is

(0,12,3,16,6,10,1,11,2,13,4,14,5,15,7,19,9,17,8,18),
while the labeling with maximum CAB value is
(16,5,14,2,11,7,19,9,17,8,18,4,15,6,12,3,13,1,10,0).

We can see that both labelings are very different.

The CAB problem was proved to be NP-hard in Raspaud et al.
[32]. This problem was originally introduced in Leung et al. [25]
in connection with multiprocessor scheduling problems. It has
been found to be relevant in allocating time slots for different
sensors in a network such that two sensors that interfere each
other have a large time interval between their periods of operation
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Fig. 2. A caterpillar Ps 4 graph.
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