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a b s t r a c t

This paper proposes a new probabilistic graphical model which contains an unobservable latent variable
that affects all other observable variables, and the proposed model is applied to ranking evaluation of
institutions using a set of performance indicators. Linear Gaussian models are used to express the causal
relationship among variables. The proposed iterative method uses a combined causal discovery algorithm
of score-based and constraint-based methods to find the network structure, while Gibbs sampling and
regression analysis are conducted to estimate the parameters. The latent variable representing ranking
scores of institutions is estimated, and the rankings are determined by comparing the estimated scores.
The interval estimate of the ranking of an institution is finally obtained from a repetitive procedure. The
proposed procedure was applied to a real data set as well as artificial data sets.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Ranking higher education institutions began in the United States
in the early 20th century, and it has become increasingly more influ-
ential with time. Most ranking systems select the performance indi-
cators (research, education, etc.), assign a weight to each indicator
and calculate the weighted score for each institution; this is the
‘weight-and-sum’ approach. However, this method sometimes be-
comes controversial because assigning weights to performance indi-
cators is subjective. Thus demand for a new quantitative method of
ranking is on the rise although there are many issues other than rak-
ing methods as pointed out in Vught and Westerheijden [34].

Some studies have used approaches other than the weight-and-
sum approach to rank institutions. These methods include an
empirical Bayes approach to ranking schools based on student
achievement [18], Bayesian analysis for ranking institutions [15],
a latent-variable technique for university ranking based on several
indicators [16] and the analytic hierarchy process for determining
weights of indicators [23]. In addition, a method based on a super-
vised naïve Bayes structure uses the mixture of truncated expo-
nentials, which applies the rank information of an expert [12]. A
Bayesian latent variable model has been proposed for estimating
the top ranked SNPs detected from genetic association studies
[13], which may also be applied to the institution ranking problem.

When using the ranking evaluation systems other than the
weight-and-sum approach, a structure analysis is necessary which
considers the relationship among performance indicators. How-
ever, few studies have been conducted on the structure analysis
for ranking evaluation. The ordinary modeling techniques for the
structure analysis are structural equation models (SEMs) based
either on linear structure relationships or partial least squares
and Bayesian networks (BNs) [20]. Especially, BNs can be used as
probabilistic inference engines, building models of domains that
have intrinsic uncertainty. BNs are graphical models based on the
notion of conditional independence that subsumes a wide range
of statistical models including regression models, factor analysis
models, and structural equation models. In a BN, a directed acyclic
graph (DAG) represents a set of conditional independence con-
straints among a given number of variables and their related con-
ditional probability distributions. The procedures for developing
BNs involve learning the structure (the relationships between vari-
ables) first, and then parameterizing the associated conditional dis-
tributions. Graphical models, in particular those based on DAGs,
have natural causal interpretations and thus form a language in
which causal concepts can be discussed and analyzed in precise
terms [21]. The conditional independence assumptions in a BN
yield models more compact than those based on full joint probabil-
ity distributions, thus reducing computational complexity when
the number of variables is large [30]. Lately, BNs have been used
in various applications such as risk management [3], resource allo-
cation decisions [10,11], IT implementation [20], species distribu-
tion [1], higher education [12], and health risk assessment [22].
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In this paper, we propose a new Bayesian network model which
has an unobservable latent variable that affects all other observa-
ble variables. To solve the ranking problem, the latent variable rep-
resents the ranking variable to be finally estimated, and the
observable variables indicate performance indicators of each insti-
tution. Our first task is to identify the causal relation among these
variables, and the second task is to determine the institution rank-
ings in terms of intervals.

Causal discovery algorithms (CDAs) for a BN can be classified
into three different categories: the score-based approach, the con-
straint-based approach, and the combined approach [35]. Score-
based methods select a model with the highest posterior probabil-
ity when the prior of each model is given. Constraint-based meth-
ods use statistical methods to detect associations and
independencies among variables. Each method has a trade-off be-
tween time complexity and accuracy. Score-based methods gener-
ally provide accuracy but their time complexity is very high.
Constraint-based methods give much lower time complexity, but
they may not be accurate if conditional independence (CI) tests fail.
The combined methods use both concepts to build the graph by
compromising the benefit in terms of time complexity and accu-
racy. These methods cannot be directly applied to our new graph-
ical model which has a latent variable, so a new approach needs to
be developed for our purpose.

The proposed approach consists of two phases and each phase is
repeated until the network structure converges. First, latent rank-
ings are obtained using Gibbs sampling and gradient descent from
a given network structure. Second, the updated network structure
is found by the revised version of Multiple Search (MS) algorithm
[7] using the latent rankings. The final rankings in terms of interval
estimates are obtained based on the convergent structure.

The rest of the paper is organized as follows. The BN under con-
sideration is modeled in Section 2. The proposed method of learn-
ing the BN is described in Section 3. The proposed method is
applied to real data in Section 4. Section 5 reports on a further
experiment with artificial data to check the accuracy and consis-
tency of the proposed new Bayesian network model. Conclusions
are presented in Section 6.

2. Bayesian network having a latent variable

Our ranking problem is to assign a ranking to each of the given
number of institutions based only on their performance indicators.
For this purpose we will consider a new type of BN as shown in
Fig. 1. The difference from the usual BN is to contain an unobserv-
able latent variable that affects all other observable variables. Let Xi

(i = 1,2, . . . ,m) be the ith variable where m is the number of vari-
ables. These variables are performance indicators for our ranking
problem. They are assumed to be observable for each institution,
and they may have causal relationships among themselves. Let Z
be an unobservable latent variable that affects all other variables.
Without the latent variable Z, the network will be the same as a
usual graphical model. For our ranking problem, Zj (j = 1,2, . . . ,n)
represents the unobservable ranking score of the jth institution,
where n is the number of institutions. Hence, our problem is to
estimate the ranking scores of all institutions by considering the
causal relationship among observable performance indicators.
Once the ranking scores of all institutions are estimated, the rank-
ing will be determined by comparing the scores’ magnitudes.

2.1. Linear Gaussian model

Consider an arbitrary DAG in which node i represents a contin-
uous random variable Xi that has a Gaussian distribution. Then, un-

der the linear Gaussian model, the conditional distribution of Xi

given its parent node pai is also Gaussian:

XijXpai
� N

X
j2pai

wijXj þ bi; v i

 !
ð1Þ

where wij and bi are parameters that govern the relationship of
Xpai
! Xi, and vi is the conditional variance of Xi.

A DAG ‘G’ depicts a set of variables, X1,X2, . . . ,Xm, and their rela-
tionships. Each node of G is a variable, and the directed arcs repre-
sent the parental relationships among the variables. The joint
probability distribution of G is

pðx1; x2; . . . ; xmjGÞ ¼
Ym
i¼1

pðxijxpai
;GÞ ð2Þ

where p (x1,x2, . . . ,xmjG) represents the probability distribution of a
specific combination x1,x2, . . . ,xm from the variables X1,X2, . . . ,Xm,
and xpai

is a vector that represents the list of direct parents of Xi,
as depicted by G. BNs are locally structured, meaning that each node
interacts only with its parent nodes.

For a given structure G under consideration, we estimate its
parameters in Eq. (1) and derive the distribution of the latent var-
iable Zj. Because our graphical model includes a latent variable, the
existing method cannot be applied. So, we developed a new proce-
dure, which will be described in Section 3.

2.2. Learning Bayesian networks from data

If the structure of the BN is not known, the underlying structure
of the BN given by G must be learned. This structure includes the
specifications for the conditional independence assumptions
among the variables of the model and the parameters. Many DAGs
may determine the same joint probability distribution. Therefore,
the family of all DAGs with a given set of vertices is naturally par-
titioned into Markov-equivalence class, each class being associated
with a unique statistical model. This means that the structure of

Fig. 1. An example of our graphical model having a latent variable.
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