
Large scale instance matching via multiple indexes and candidate
selection

Juanzi Li a, Zhichun Wang a,b,⇑, Xiao Zhang a, Jie Tang a

a Department of Computer Science and Technology, Tsinghua University, Beijing, China
b College of Information Science and Technology, Beijing Normal University, Beijing, China

a r t i c l e i n f o

Article history:
Received 16 November 2011
Received in revised form 30 May 2013
Accepted 6 June 2013
Available online 18 June 2013

Keywords:
Heterogeneous data
Semantic web
Instance matching
Ontology matching
Linked data

a b s t r a c t

Instance matching aims to discover the linkage between different descriptions of real objects across het-
erogeneous data sources. With the rapid development of Semantic Web, especially of the linked data,
automatically instance matching has been become the fundamental issue for ontological data sharing
and integration. Instances in the ontologies are often in large scale, which contains millions of, or even
hundreds of millions objects. Directly applying previous schema level ontology matching methods is
infeasible. In this paper, we systematically investigate the characteristics of instance matching, and then
propose a scalable and efficient instance matching approach named VMI. VMI generates multiple vectors
for different kinds of intained in the ontology instances, and uses a set of inverted indexes based rules to
get the primary matching candidates. Then it employs user customized property values to further elim-
inate the incorrect matchings. Finally the similarities of matching candidates are computed as the inte-
grated vector distances and the matching results are extracted. Experiments on instance track from OAEI
2009 and OAEI 2010 show that the proposed method achieves better effectiveness and efficiency (a
speedup of more than 100 times and a bit better performance (+3.0% to 5.0% in terms of F1-score) than
top performer RiMOM on most of the datasets). Experiments on Linked MDB and DBpedia show that VMI
can obtain comparable results with the SILK system (about 26,000 results with good quality).

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Ontology is one of the key components to realize the Semantic
Web. With the rapid development of the Social Web, a lot of ontol-
ogies especially lightweight ontologies have been widely used, and
a huge number of instances were annotated according to the ontol-
ogies. For example, the FOAF vocabulary (schema) is comprised of
13 classes and 60 properties while LiveJournal website alone pro-
vides approximately 15,000,000 FOAF profiles (instances). The
DBpedia ontology, which covers 273 classes described by 1300 dif-
ferent properties, contains about 1,600,000 instances. GeoNames
provides RDF descriptions of more than 6,500,000 geographical
features worldwide. The Linking Open Data (LOD) project already
has a dataset of more than 4.7 billion RDF triples and around 142
million RDF links between instances [6].

As the number of published ontologies grows, a increasing num-
ber of ontology-based applications have also been proposed, such
as Question Answering [14], Query Expansion [28], Knowledge

Support [1] and Web Services [26]. The rapid usage of ontologies
arises the ontology heterogeneity problem. In the last decade,
ontology matching has been widely studied as the key technology
to reach interoperability over ontologies [20,8,24]. Traditionally,
ontology matching approaches focus on finding semantic corre-
spondences between complex ontology schemas. Recently, as the
number of ontology instances grows rapidly, the problem of in-
stance matching attracts increasingly more research interest [35].
The yearly ontology matching competition OAEI (Ontology Align-
ment Evaluation Initiative)1 has set up instance matching cam-
paigns since 2009. Several systems, such as RiMOM [36], HMatch
[7], and FBEM [30], have participated in the instance matching tasks
of OAEI. The problem of instance matching involves handling large
number of instances, which raise new challenges: (1) How to deal
with large scale input? Shvaiko and Enzuenat [29] point out that
the scalability is important for ontology matching approaches.
Widely used matching techniques such as Edit Distance [15], KNN
[16], Google Distance [12] will take much running time when
applied to large number of instances. Suppose we apply the Edit
Distance, one of the most efficient similarity metrics, to match
two ontologies with 1,000,000 instances. Even on a server with
32 Gigabyte memory and 3.2 GHz CPU, the running time of

0950-7051/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.knosys.2013.06.004

⇑ Corresponding author at: Department of Computer Science and Technology,
Tsinghua University, Beijing, China. Tel.: +86 01062773618; fax: +86 010 62781461.

E-mail addresses: ljz@keg.cs.tsinghua.edu.cn (J. Li), zcwang@bnu.edu.cn
(Z. Wang), zhangxiao@keg.cs.tsinghua.edu (X. Zhang), jietang@tsinghua.edu.cn
(J. Tang). 1 http://oaei.ontologymatching.org/.

Knowledge-Based Systems 50 (2013) 112–120

Contents lists available at SciVerse ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier .com/locate /knosys

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.knosys.2013.06.004&domain=pdf
http://dx.doi.org/10.1016/j.knosys.2013.06.004
mailto:ljz@keg.cs.tsinghua.edu.cn
mailto:zcwang@bnu.edu.cn
mailto:zhangxiao@keg.cs.tsinghua.edu
mailto:jietang@tsinghua.edu.cn
http://oaei.ontologymatching.org/
http://dx.doi.org/10.1016/j.knosys.2013.06.004
http://www.sciencedirect.com/science/journal/09507051
http://www.elsevier.com/locate/knosys


calculating all the potential matches will be up to 2 days. (2) How to
trade off between precision and recall? Most approaches use strict
measures to find matching results with very high precision but only
a very small part of the potential matches are obtained. By investi-
gating information contained in ontology instances, we observe that
there are several different characteristics of instance matching com-
pared with the traditional ontology matching in schema level. Firstly,
instance data is usually with large scale. Secondly, instance data con-
tains devious semantic information. Usually concepts and properties
in ontology schema are described with labels and comments. How-
ever, for instances or individuals in an ontology, every property is
given a specific value and represented in various ways. For example,
the e-mail address of a person, the ISBN number of a book, the DNA
sequence of a gene is consisted of a large number of different values
of validated types. It is difficult to take full advantages of the infor-
mation. Thirdly, the concepts and properties in the ontology schema
construct a connected graph structure. The ontology can be viewed
as a whole ontology graph and some graph-based algorithms are em-
ployed in ontology matching. However, a concept may have lots of
instances and all the instances are with almost the same structure.
The graph algorithm with the whole ontology graph is not suitable
for the instance matching task.

To address the above two challenges, we propose a large scale
instance matching method (named VMI) by using multiple indexes
and candidate selection. VMI aims at matching large scale instance
datasets efficiently and generates as many matching results as pos-
sible with high quality. In particular, VMI uses the vector space
model to represent instances’ descriptive information. VMI creates
two types of vectors for each instance, one for names and labels of
the instance and the other for descriptive information and infor-
mation from neighboring instances. We build inverted indexes
for these types of vectors and select matching candidates according
to the indexes. In this way, VMI is able to avoid pair-wise compar-
ison and reduces the matching space greatly so that the matching
efficiency can be improved. Then VMI compares the value pairs
from user specified properties to filter the primary candidates
and improve the precision. Experimental results on the datasets
from the Instance Matching track of OAEI 2009 and OAEI 2010
show that VMI is much faster than existing methods (100 times
faster than the participants) while achieves better (+3.0% to 5.0%
in terms of F1-score on most of datasets) accuracy performance
than the top performer RiMOM. Experimental results on Linked-
MDB and DBpedia dataset show that VMI can generate matching
results with almost the same amount and quality as ones from
the SILK system [33].

Contributions of this work can be summarized as:

� We formally define the problem of large scale instance
matching.
� We propose an efficient and accurate instance matching

method by using the inverted indexing and candidate matching
selection rules.
� We validate the proposed VMI approach on three datasets from

the Instance Matching track of OAEI 2009 and 2010 as well as
datasets from Linked Open Data. Experimental results show
that VMI can achieve a more than 100 � speedup than the best
performer in OAEI 2009 and a comparable precision and recall
performance with the prevalent SILK system.

The rest of this paper is organized as follows. In Section 2, some
related work are summarized. In Section 3, we give some prelimin-
ary and definitions. In Section 4, we show an overview of VMI algo-
rithm and a detailed presentation of VMI is given in Section 5.
Experimental results are illustrated in Section 6 with discussions.
Finally, conclusion and future work are given in Section 7.

2. Related work

There has been already several approaches dealing with the
instance matching problem. Most of them focus on achieving
high precision and recall, the problem of matching large scale in-
stances has not been well studied. We summarize some of these
methods and systems compare them with our proposed ap-
proach VMI.

COMA++ [3] is an schema and ontology matching tool utiliz-
ing a composite approach to combine different match algo-
rithms. In the enhanced eversion of COMA++, it uses two
methods to matching instances [10]: one is the content-based
similarity, the other is constraint-based similarity. COMA++
needs to compare all the instances between two ontologies,
and it also uses a similarity propagation algorithm to transfer
similarities from instances to their surrounding ontology ele-
ments. Our approach generates a virtual document for each in-
stance to include its neighboring information, and computes
the similarity by using Vector Space Model; it is more efficient
than the iterative similarity propagation. Furthermore, our ap-
proach selects the matching candidates based on two inverted
indexes, it does not need to compare all the instance pairs.
HMatch [7] is a ontology matching suite which provides a com-
ponent for instance matching. In HMatch, each instance is repre-
sented as a tree where role fillers are nodes and roles are labeled
edges. Matching is performed by traversing the instances trees of
the two instance in postorder, and recursively executing filler
similarity. Filler similarities of different properties are combined
by weighted averaging with manually weights. RiMOM [31]21
uses a systematic approach to quantitatively estimate the simi-
larity characteristics for each matching task and employs a strat-
egy selection method to automatically combine the matching
strategies based on two estimated factors. For instance matching,
RiMOM chooses some data-type properties as the ‘‘necessary’’
and ‘‘sufficient’’ attributes manually. ‘‘sufficient’’ Attributes are
use to find the initial alignment while the ‘‘necessary’’ attributes
for refinement, and a similarity propagation is employed in the
last step. DSSim [23] is an ontology mapping system used with
a multi-agent ontology mapping framework in the context of
question answering. In order to improve the matching quality,
it incorporates the Dempster Shafer theory of evidence into the
mapping process. DSSim assesses similarity of all the entities
from two different ontologies belief combination process of
DSSim is also computationally expensive. Therefore, DSSim em-
ploys an multi-agent architecture to enable distributed execution
of the approach. Our approach uses inverted indexes to select
matching candidates, therefore reduces the computation time;
it is different from the distributed execution of DSSim that needs
multiple machines. FBEM [30] is a feature based instance match-
ing system. It does not need any kind of schema or strong typing
information of the instances. FBEM supports a complete generic
way to match instances. Given two instances, FBEM first com-
putes the Levenstein similarity between all the features of them,
and then calculates the combined similarity score by summing
all the maximum similarity feature combinations between two
instances. FBEM also implemented a ‘‘brute-force’’ matching,
similarity of any instance pairs need to be computed to get
the matching results. Being different from FBEM, our approach
allows users to specify instance types and important properties
to improve the accuracy and efficiency of VMI. SILK [33] is a link
discovery engine which automatically finds RDF links between
datasets. Users should specify which type of RDF links should
be discovered between the data sources as well as which condi-
tions data items must fulfill in order to be interlinked. These link
conditions can apply different similarity metrics to multiple

J. Li et al. / Knowledge-Based Systems 50 (2013) 112–120 113



Download English Version:

https://daneshyari.com/en/article/6862789

Download Persian Version:

https://daneshyari.com/article/6862789

Daneshyari.com

https://daneshyari.com/en/article/6862789
https://daneshyari.com/article/6862789
https://daneshyari.com

