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ABSTRACT

Working memory requires information about external stimuli to be represented in the
brain even after those stimuli go away. This information is encoded in the activities
of neurons, and neural activities change over timescales of tens of milliseconds. In-
formation in working memory, however, is retained for tens of seconds, suggesting the
question of how time-varying neural activities maintain stable representations. Prior
work shows that, if the neural dynamics are in the ‘null space’ of the representation
- so that changes to neural activity do not affect the downstream read-out of stimu-
lus information - then information can be retained for periods much longer than the
time-scale of individual-neuronal activities. The prior work, however, requires pre-
cisely constructed synaptic connectivity matrices, without explaining how this would
arise in a biological neural network. To identify mechanisms through which biological
networks can self-organize to learn memory function, we derived biologically plausi-
ble synaptic plasticity rules that dynamically modify the connectivity matrix to enable
information storing. Networks implementing this plasticity rule can successfully learn
to form memory representations even if only 10% of the synapses are plastic, they are
robust to synaptic noise, and they can represent information about multiple stimuli.

1 INTRODUCTION

Working memory is a key cognitive function, and it relies on us retaining representations of external stim-
uli even after they go away. Stimulus-specific elevated firing rates have been observed in the prefrontal
cortex during the delay period of working memory tasks, and are the main neural correlates of working
memory (Funahashi et al., 1993; Fuster & Alexander, 1971). Perturbations to the delay period neural
activities cause changes in the animal’s subsequent report of the remembered stimulus representation (Li
et al., 2016; Wimmer et al., 2014). These elevated delay-period firing rates are not static but have time-
varying dynamics with activities changing over timescales of tens of milliseconds (Brody et al., 2003a;
Romo et al., 1999), yet information can be retained for tens of seconds (Fig. 1A). This suggests the
question of how time-varying neural activities keep representing the same information.

Prior work from Druckmann & Chklovskii (2012) shows that, if the neural dynamics are in the ”null
space” of the representation - so that changes to neural activity do not affect the downstream read-out of
stimulus information - then information can be retained for periods much longer than the time-scale of
individual neuronal activities (called the FEVER model; Fig. 1B). That model has a severe fine-tuning
problem, discussed below. We identified a synaptic plasticity mechanism that overcomes this fine-tuning
problem, enabling neural networks to learn to form stable representations.

While the dynamics of neurons in the FEVER model match that which is observed in the monkey pre-
frontal cortex during a working memory task (Murray et al., 2017), the model itself requires that the
network connectivity matrix have one or more eigenvalues very near to unity. According to the Gersh-
gorin Circle Theorem, this will almost surely not happen in randomly-connected networks: fine-tuned
connectivity is needed (Zylberberg & Strowbridge, 2017). Druckmann & Chklovskii (2012) suggest a
mechanism of Hebbian learning by which this connectivity can be learned. That mechanism requires the
read-out weights to form a ’tight frame’, which will not necessarily be true in biological circuits. Thus,
the prior work leaves it unknown how synaptic plasticity can form and/or maintain functional working
memory networks. Here, we identify biologically plausible synaptic plasticity rules that can solve this
fine-tuning problem without making strong assumptions like ’tight frame’ representations.
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