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Small-world networks provide an excellent balance of efficiency and robustness that is not available with
other network topologies. These characteristics are exhibited in the Memristive Nanowire Neural Network
(MN?), a novel neuromorphic hardware architecture. This architecture is composed of an electrode array
connected by stochastically deposited core-shell nanowires. We simulate the stochastic behavior of the
nanowires by making various assumptions on their paths. First, we assume that the nanowires follow
straight paths. Next, we assume that they follow arc paths with varying radii. Last, we assume that they

fflee):lv:g;f;.rphics follow paths generated by pink noise. For each of the three methods, we present a method to find whether
Small-world a nanowire passes over an electrode, allowing us to represent the architecture as a bipartite graph. We
Network science find that the small-worldness coefficient increases logarithmically and is consistently greater than one,
Nanowires which is indicative of a small-world network.
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1. Introduction

Neuromorphic hardware architectures, much like biological
neural networks, are subject to constraints that are not present
in traditional software-based simulations of artificial neural net-
works (ANNs) (Yu, Zhang, Chen, & Xie, 2018). For example, the
weights of a neural network must be physically linked to the two
neurons the weights connect. This introduces the wiring cost of
a network, which is a measure of how much wiring is needed to
connect all the neurons in the network. In both biological neural
networks and neuromorphic hardware architectures, this wiring
between the neurons consumes the vast majority of the available
space (Raj & Chen, 2011). Therefore, minimizing this wiring cost is
extremely important.

In biological neural networks, another important parameter is
the global efficiency of the network, which is the inverse of the
mean shortest path length between two random neurons (Achard
& Bullmore, 2007). This value determines how efficiently the net-
work can process and transmit information. For fully connected
networks, the value of this parameter is maximal, while for lo-
cally connected networks, it is low. Thus, for example, biological
brains are the result of a delicate balance between the competing
objectives of creating a well-connected network with a high global
efficiency, while simultaneously minimizing the amount of wiring
needed to connect the network (Achard & Bullmore, 2007).
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Similarly, any scalable neuromorphic architecture must balance
these two cost functions. In biological neural networks, as well as
other complex networks, the optimization of balancing these two
objectives (wiring cost and global efficiency) results in a small-
world network topology. Small-world networks have mostly local
connectivity, with a nontrivial number of random, long-range con-
nections added to the network. These small-world networks have
been shown to achieve an efficient balance between wiring cost
and global efficiency, allowing small-world networks to scale far
more efficiently than fully or locally connected networks (Klein-
berg, 2000).

In addition to the small-world property, biological neural net-
works display many other characteristics of complex networks,
such as stochasticity, a diverse degree distribution (scale-free
structure), and modularity (Holden, 1983; Martinello, Hidalgo,
Maritan, & di Santo, 2017; Rodriguez, Izquierdo, & Ahn, 2017).

Despite the advantages of these complex network topologies,
to date, most neuromorphic hardware architectures continue to
use fully or locally connected crossbar arrays (Schuman, Potok, &
Patton, 2017). This is likely due to the simplicity with which these
arrays can be fabricated and integrated into conventional hard-
ware. However, there are merits to exploring alternative methods
of fabricating more complex network topologies, given the benefits
of small-world connectivity, specifically, with respect to the scala-
bility of the networks.

Here, we show that a novel method for fabricating complex
networks based on memristive nanowires developed by Kendall &
Nino (2015) has an extremely high density of trainable parameters
(~400 million tunable synapses per square centimeter) and more
importantly, it exhibits small-world characteristics.
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Fig. 1. (a) Each red-green pair corresponds to the input and output of a single neuron, tiled across the entire chip. The MN? is connected with a nanowire mesh overlaid on
the neuron grid. (b) Each electrode forms a memristive synapse with the neurons below. (c) The equivalent circuit diagram of Fig. 1b. (For interpretation of the references

to color in this figure legend, the reader is referred to the web version of this article.)

Table 1

Network specifications.
Description Value
Nanowire diameter d =100 nm
Neuron width/length (square) I=4pm
Neuron spacing a=1pm
Nanowire mat thickness s=1um
Wire packing fraction p=0.25

1.1. Network architecture

The network we describe is based on a network of core-shell
memristive nanowires, or nanofibers, with a conductive core and
a memristive shell. The architecture, which we dub the Memristive
Nanowire Neural Network, or MN3, is shown in Fig. 1. The wires
serve as the interconnect layer in an array of CMOS neurons tiled in
a square array. Each red-green pair corresponds to a single neuron.
It is important to note that unlike conventional architectures, the
neurons are not connected in the CMOS layer (Yu, et al., 2018).
Instead, a layer of nanowires is deposited on the surface of the
silicon, connecting the neurons in a stochastic manner. Metal pil-
lars are grown through the nanowire layer to connect them to the
electrodes below. The cores of the nanowires are conductive to
allow for signal transmission between neurons, while the shell is
made from a memristive material, allowing for the formation of
memristive synapses at the interface between each nanowire and
neuron.

We can approximate the neuron and synapse densities by using
a simple geometric approach. We use the assumptions in Table 1
on the achievable feature sizes in the network. Note that the wire
packing fraction is the density of wires compared to that in a close-
packed structure (Batch, Cumiskey, & Macosko, 2002).

From I and a, we can determine how many neurons N will fit in
a 1cm? area:

N = 1/(I+ a)* = 1/(0.0004 + 0.0001)* = 4 x 105. (1)

We can now determine how many wires contact each electrode if
the wires are close-packed, w,, and then multiply by the packing
fraction to get the average number of wires contacting each elec-
trode, w. We have

we = Is/d?* = (0.0004)(0.0001)/(0.00001)* = 400. (2)

Assuming a packing fraction for the wires of 0.25, i.e. only 1/4 of
the maximum packing density, we arrive at the wire density per
electrode w. This value can be increased at the expense of neuron
density. We have

w = pw, = (0.25)(400) = 100. (3)

Now we can calculate the total number of synapses S in the net-
work. Since a synapse is formed at the intersection of each wire
with each electrode, the total number of synapses is equal to the
number of electrodes multiplied by the average number of wires
per electrode. We have

S =Nw =~ (4 x 10°)(100) = 4 x 108. (4)

The density of neurons in the MN® (4 x 10® neurons per cm?)
is several orders of magnitude higher than state-of-the-art values
reported in the literature, including Intel’s Loihi (218,400 neurons
per cm?) (Davies et al., 2018), IBM’s TrueNorth (~12,157 neurons
per cm?) (Merolla et al., 2014), and Stanford’s Neurogrid (~39,620
neurons per cm?) (Benjamin et al., 2014). Two factors contribute
to this sharp increase in density: the integration of the synapses
and the wiring into a single compound structure, and the offloading
of the synapses and the wiring from the surface of the CMOS to a
sparsely connected nanowire layer.

By removing the wiring and synapses from the CMOS layer,
the neurons can be close-packed as tightly as possible, drastically
increasing neuron density. Similarly, the stacked mat of nanowires
(connected to the neuron electrodes through vertically grown
metal pillars) has a high density of wires, which are capable
of connecting neurons across long distances, resulting in a high
synapse density. The number of overlap of nanowires is estimated
to be 10 (so the nanowires are stacked approximately 10 high).
This gives enough spacing so that metal deposition techniques,
such as sputtering, can fully penetrate the mesh. Simulations were
conducted to verify that the presented wire density is compatible
with this fabrication process. Regarding polarities, there are no
inhibitory synaptic polarities as all conductances are positive. The
neurons (external nodes) are used as hyperbolic tangent units, so
they can take both positive and negative values. The memristor
polarities themselves are all aligned towards the nanowire nodes
(based on the wire core acting as the bottom electrode).

The sparsity of the resulting connection layer is important in re-
ducing the total amount of wiring needed to connect the network.
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