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interconnected nonlinear plant to validate the present control scheme.
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1. Introduction

The design of stabilizing controllers for interconnected non-
linear dynamical systems has drawn intensive attention over the
past several decades. This is mainly because interconnected non-
linear dynamical systems have widely emerged in real world ap-
plications, such as electric power systems, computer networks,
transportation systems, and aerospace systems. A core challenge
of designing stabilizing controllers for such systems is that it often
suffers from computational expensiveness when using a central-
ized control scheme (Jain & Khorrami, 1997). To overcome the
difficulty, the decentralized control method was introduced. The
decentralized control approach aims at partitioning the control
problem of the overall plant into several manageable subproblems
(Bakule, 2008). Then, the overall system can be controlled by a
set of independent controllers. In other words, the decentralized
controller is comprised of the independent controllers. A signifi-
cant characteristic of the decentralized control method is that it
only uses locally available subsystem states rather than the whole
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system states. Due to this property, plenty of studies on decentral-
ized control has been reported in the literature (Hou, Cheng, & Tan,
2009; Li & Tong, 2017; Liu, Jiang, & Hill, 2012).

The optimal control methodology introduced to solve decen-
tralized control problems can be dated back to at least 1980s. In
Saberi (1988), a decentralized control of interconnected nonlinear
systems was derived from an optimal control point of view. As
pointed out by Saberi (1988), the decentralized controller for the
overall system was able to be obtained by solving the optimal con-
trol problems of isolated subsystems. It is well-known that solving
nonlinear optimal control problems often boils down to solving
a class of nonlinear partial differential equations, namely, the
Hamilton-Jacobi-Bellman equations (HJBEs). However, the H]BEs
generally cannot be solved analytically (Aliyu, 2018). Thus, many
researchers tend to find the approximate solutions of nonlinear
optimal control problems. In 1970s, adaptive critic designs (ACDs)
were first introduced as effective tools to approximately solve
the optimal control problems (Werbos, 1974; Widrow, Gupta, &
Maitra, 1973). The typical structure used in ACDs is the actor-critic
architecture which consists of two networks: The actor network
performs an action to the controlled system, and the critic network
evaluates the value of that action and provides feedback infor-
mation to the actor network. Because adaptive dynamic program-
ming (ADP) (Liu, Wei, Wang, Yang, & Li, 2017) and reinforcement
learning (RL) (Vrabie, Vamvoudakis, & Lewis, 2013) are almost in
the same spirits as ACDs, they are usually viewed as synonyms
for ACDs. In this paper, we take ADP and RL as a kind of ACDs.
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Over the past three decades, many kinds of ADP and RL have
been developed, such as goal representation ADP (Zhong, Ni, & He,
2017), robust ADP (Gao, Jiang, Jiang, & Chai, 2016; Jiang & Jiang,
2017), policy iteration ADP (Luo, Liu, Wu, Wang, & Lewis, 2017;
Zhang, Jiang, Luo, & Xiao, 2017), value iteration ADP (Bertsekas,
2017; Wei, Liu, & Lin, 2016), data-based ACD (Wang, Liu, Zhang,
& Zhao, 2016), integral RL (Lee, Park, & Choi, 2015; Yang, Liu, Luo,
& Li, 2016), online RL (Kiumarsi, Vamvoudakis, Modares, & Lewis,
2018; Zhao & Zhu, 2015), and off-policy RL (Modares, Lewis, &
Jiang, 2016; Zuo, Song, Lewis, & Davoudi, 2017).

In recent years, applications of ACDs to the design of optimal
controller for interconnected systems have been extensively stud-
ied. In Mehraeen and Jagannathan (2011), an online decentral-
ized optimal control scheme was developed for partially unknown
discrete-time nonlinear systems via direct neural dynamic pro-
gramming (NDP) (note: according to Liu et al. (2017), NDP is a
synonym for ADP). After that, in Bian, Jiang, and Jiang (2015), a
robust ADP was introduced to obtain the decentralized adaptive
optimal control of continuous-time large-scale interconnected sys-
tems with completely unknown dynamics. Both Bian et al. (2015)
and Mehraeen and Jagannathan (2011) employed the actor-critic
architecture, where the actor aimed at approximating the optimal
control and the critic tended to evaluate the cost of the overall
system. Later, in Mu, Sun, Wang, Song, and Qian (2018), an ADP-
based decentralized optimal control strategy was presented for
continuous-time nonlinear systems with matched interconnec-
tions. Unlike Bian et al. (2015) and Mehraeen and Jagannathan
(2011), Mu et al. (2018) only used critic networks to derive the
decentralized optimal controller. In this sense, it had a simpler
architecture. It is worth emphasizing here that all the above men-
tioned decentralized control approaches require the initial ad-
missible control while implementing them. However, as stated in
Liu, Yang, Wang, and Wei (2015), the initial admissible control is
nothing else but the sub-optimal control, which is generally hard
to obtain. Recently, Tong, Sun, and Sui (2018) developed a fuzzy
adaptive decentralized optimal control scheme for continuous-
time strict-feedback interconnected nonlinear systems via ADP. To
implement this proposed ADP, there was no need to provide an
initial admissible control, which was an advantage. Nevertheless,
in comparison with Bian et al. (2015) and Mu et al. (2018), the
performance for the overall system was not taken into account.

Inspired by aforementioned works, in this paper, a new optimal
control strategy is developed for a class of uncertain nonlinear
systems with unmatched interconnections. Owing to the present
scheme having much in common with decentralized control ap-
proaches, this optimal control strategy can be regarded as a kind
of decentralized control methods. In the beginning, a stabilizing
feedback controller for the interconnected nonlinear systems is
designed through modifying an array of optimal control laws
of auxiliary subsystems. Meanwhile, this feedback controller is
demonstrated to be able to optimize a prescribed cost function.
Then, under the framework of ACDs, the critic networks are utilized
to solve the HJBEs associated with auxiliary subsystem optimal
control laws. The critic network weights are updated via the gra-
dient descent method combined with an additional stabilizing
term. Based on the newly established weight update rules, the
initial admissible control is no longer indispensable. In addition,
all signals in the closed-loop auxiliary subsystems are proved to be
uniformly ultimately bounded (UUB) by using Lyapunov method.

The remainder of the paper is arranged as follows. Section 2
presents preliminaries and problem formulations Section 3 de-
scribes the optimal control strategy for interconnected nonlinear
systems. Section 4 illustrates that the approximation solutions
of HJBEs can be obtained via ACDs. Meanwhile, the stability of
closed-loop auxiliary subsystems is discussed. Section 5 provides
an example to validate the developed theoretical results. Finally,
Section 6 presents the discussion and concluding remarks.

Notation: R and Z* represent the set of all real numbers and the
set of all positive integers, respectively. R™ and R"*™ represent
the spaces of all real m;-vectors and all n; x m; real matrices,
respectively. I, is the identity matrix of dimension n; x n;. £
means ‘equal by definition’. T denotes the transpose. C! denotes

the class of functions with continuous derivative. When x; =
T )

[xi1, X2, -, xin]” € R, [Ixi]| =

clidean norm of x;. When A; € R™*™i_ ||A;|| denotes the Frobenius-

norm of A;. VVj(x;) denotes the partial derivative of Vi(x;) with
respect to x;, i.e., VV;(x;) = aVi(x;)/0x;.

\/m represents the Eu-

2. Preliminaries and problem formulations

Consider the continuous-time interconnected nonlinear sys-
tems formulated as

Xi(t) = fitxi(t)) + g(xi()ui(t) + Afi(x(1)) (1)
i=12,...,N

where x; € R" and u; € R™ are the measurable state and control
input of the ith subsystem, respectively, x = [x], xJ, ..., xy]" € R”
(n = Zf’zlni) is the overall state, fi(x;) € R"™, gi(x;) € R"*™ and
Afi(x) € R" are the known internal dynamics, the known input
matrix, and the uncertain interconnection of the ith subsystem,
respectively.

The following assumptions are provided to facilitate our later
discussion. These assumptions were employed in Tripathy, Kar,
and Paul (2018), Wang, Liu, My, and Ma (2016) and Yang and He
(2018).

Assumption 1. fi(x;) and gi(x;),i = 1,2, ..., N, are continuously
differentiable in their arguments. x; = 0 is the equilibrium point of
the ith subsystem when u;(t) = 0 and Afi(x(t)) = O forallt > 0.
Furthermore, x;p = x;(0) is the initial state of the ith subsystem,
wherei=1,2,...,N.

Assumption 2. The interconnected term Afj(x) satisfies the un-
matched condition, i.e.,
Afi(x) = ki(xi)wi(x) (ki(xi) # gi(xi)), i=1,2,...,N

where k;(x;) € R™*Pi is a known smooth function, and wi(x) € RPi
is an uncertain function bounded as

N
o)l < Y agPylx), i=1,2,...,N 2)
j=1
where Pj(x;), j = 1,2,...,N, are positive-definite functions
(Khalil, 2002) and @, j = 1,2, ..., N, are nonnegative constants.

Meanwhile, w;(0) = 0and Pj(0) =0,j=1,2,...,N.
Let

Pi(x;) = max{Py;(x;), Psi(xi). - . .. Pni(xi)}. (3)
Then, we can further develop (2) as
N
lo)l < Y byPx), i=1,2,...,N (4)
j=1
where b; > a;P;j(x;)/Pi(x;), j = 1,2,...,N, are nonnegative
constants.

Assumption 3. For the ith subsystem, the control matrix g;(x;) has
the full column rank, and g (x;)ki(x;) = 0.
The cost function for interconnected system (1) is given by

J(x(t), u(t)) = / r(x(s), u(s))ds (5)
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