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a b s t r a c t

Although representation learning methods developed within the framework of traditional neural net-
works are relatively mature, developing a spiking representation model remains a challenging problem.
This paper proposes an event-based method to train a feedforward spiking neural network (SNN) layer
for extracting visual features. The method introduces a novel spike-timing-dependent plasticity (STDP)
learning rule and a threshold adjustment rule both derived from a vector quantization-like objective
function subject to a sparsity constraint. The STDP rule is obtained by the gradient of a vector quantization
criterion that is converted to spike-based, spatio-temporally local update rules in a spiking network
of leaky, integrate-and-fire (LIF) neurons. Independence and sparsity of the model are achieved by the
threshold adjustment rule and by a softmax function implementing inhibition in the representation layer
consisting ofWTA-thresholded spiking neurons. Together, thesemechanisms implement a form of spike-
based, competitive learning. Two sets of experiments are performed on the MNIST and natural image
datasets. The results demonstrate a sparse spiking visual representation model with low reconstruction
loss comparable with state-of-the-art visual coding approaches, yet our rule is local in both time and
space, thus biologically plausible and hardware friendly.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Unsupervised learning approaches using neural networks have
frequently been used to extract features from visual inputs (Bhand,
Mudur, Suresh, Saxe, & Ng, 2011; Lee, Ekanadham, & Ng, 2008).
Single layer networks using distributed representations or au-
toencoder networks (Bengio, Courville, & Vincent, 2013; Coates,
Ng, & Lee, 2011) have offered effective representation platforms.
However, the robust, high level, and efficient representation that
is obtained by networks in the brain is still not fully understood
(Frégnac, Fournier, Gérard-Mercier, Monier, Pananceau, Carelli, &
Troncoso, 2016; Landi & Freiwald, 2017; Logothetis & Sheinberg,
1996; Quiroga, Reddy, Kreiman, Koch, & Fried, 2005; Riesenhuber
& Poggio, 2002; Wandell, 1995; Young & Yamane, 1992). Under-
standing the brain’s functionality in representation learning can be
accomplished by studying spike activity (Self et al., 2016) and bio-
inspired spiking neural networks (SNNs) (Ghosh-Dastidar & Adeli,
2009; Izhikevich, 2004; Maass, 1997). SNNs provide a biologically
plausible architecture, high computational power, and an efficient
neural implementation (Maass, 1996, 2015; Neil, Pfeiffer, & Liu,
2016). The main challenge is to develop a spiking representation
learning model that encodes input spike trains to uncorrelated,
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sparse, output spike trains using spatio-temporally local learning
rules.

In this study, we seek to develop representation learning in a
network of spiking neurons to address this challenge. Our con-
tribution determines novel spatio-temporally local learning rules
embedded in a single layer SNN to code independent features
of visual stimuli received as spike trains. Synaptic weights in
the proposed model are adjusted based on a novel spike-timing-
dependent plasticity (STDP) rule which achieves spatio-temporal
locality.

Nonlinear Hebbian learning has played a key role in the de-
velopment of a unified unsupervised learning approach to rep-
resent receptive fields (Brito & Gerstner, 2016). Földiák (1990),
influenced by Barlow (1989), was one of the early designers
of sparse, weakly distributed representations having low redun-
dancy. Földiák’s model introduced a set of three learning rules
(Hebbian, anti-Hebbian, and homeostatic) to work in concert to
achieve these representations. Zylberberg, Murphy, and DeWeese
(2011) showed that Földiák’s plasticity rules, in a spiking platform,
could be derived from the constraints of reconstructive accuracy,
sparsity, and decorrelation. Furthermore, the acquired receptive
fields of the representation cells in their model (named SAILnet)
qualitatively matched those in primate visual cortex. The repre-
sentation kernels determining the synaptic weight sets have been
successfully utilized by our recent study (Tavanaei & Maida, 2017)
for a spiking convolutional neural network to extract primary
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visual features of the MNIST dataset. Additionally, the learning
rules only used information which was locally available at the
relevant synapse. Although SAILnet utilized spiking neurons in
the representation layer and the plasticity rules were spatially
local, the learning rules were not temporally local. The SAILnet
plasticity rules use spike counts accumulated over the duration
of a stimulus presentation interval. Since the SAILnet rules do not
use spike times, the question of training the spiking representation
network using a spatio-temporally local, spike-based approach like
spike-timing-dependent plasticity (STDP) (Markram, Gerstner, &
Sjöström, 2012), which needs neural spike times, remains unre-
solved. Later work, King, Zylberberg, and DeWeese (2013), extends
(Zylberberg et al., 2011) to use both excitatory and inhibitory neu-
rons (obeying Dale’s law), but the learning rules still use temporal
windows of varying duration to estimate spike rates, rather than
the timing of spike events. Our work seeks to develop a learning
rule which matches this performance but remains local in both
time and space.

In another line of research based on cost functions, Bell and
Sejnowski (1997) and Olshausen and Field (1996) showed that
the constraints of reconstructive fidelity and sparseness, when
applied to natural images, could account formanyof the qualitative
receptive field (RF) properties of primary visual cortex (area 17,
V1). These works were agnostic about the possible learning mech-
anisms used in visual cortex to achieve these representations. Fol-
lowing Olshausen and Field (1996) and Rehn and Sommer (2007)
developed the sparse-set coding (SSC) network which minimizes
the number of active neurons instead of the average activity mea-
sure. Later, Olshausen, Cadieu, and Warland (2009) introduced an
L1-norm minimization criterion embedded in a highly overcom-
plete neural framework. Although these models offer great insight
into what might be computed when receptive fields are acquired,
they do not offer insight into details of the learning rules used to
achieve these representations.

Early works that proposed a learning mechanism to explain
the emergence of orientation selectivity in visual cortex are those
of Bienenstock, Cooper, and Munro (1892) and von der Malsburg
(1973). A state-of-the-art model is that of Masquelier (2012). This
model blends strong biological detail with signal processing analy-
sis and simulation to establish a proof-of-concept demonstration of
the original (Hubel & Wiesel, 1962) feedforward model of orienta-
tion selectivity. A key feature of that model, relevant to the present
paper, is the use of STDP to account for RF acquisition. STDP is the
most popular learning rule in SNNs in which the synaptic weights
are adapted according to the relative pre- and postsynaptic spike
times (Caporale & Dan, 2008; Markram et al., 2012). Different vari-
ations of STDP have shown successful visual feature extraction in
layer-wise training of SNNs (Kheradpisheh, Ganjtabesh, &Masque-
lier, 2016; Kheradpisheh, Ganjtabesh, Thorpe, & Masquelier, 2017;
Masquelier & Thorpe, 2007; Tavanaei, Masquelier, & Maida, 2016).
In a similar vein, Burbank (2015) has also proposed an STDP-based
autoencoder. This autoencoder uses amirrored pair of Hebbian and
anti-Hebbian STDP rules. Its goal is to account for the emergence
of symmetric, but physically separate, connections for encoding
weights (W ) and decoding weights (W T ).

Another component playing a key role in representing uncor-
related visual features in a bio-inspired SNN pertains to the inhi-
bition circuits embedded within a layer. For instance, Savin, Joshi,
and Triesch (2010) developed an independent component analysis
(ICA) computation within an SNN using STDP and synaptic scaling
in which independent neural activities in the representation layer
were controlled by lateral inhibition. Lateral inhibition established
a winner(s)-take-all (WTA) neural circuit to maintain the indepen-
dence and sparsity of the neural representation layer. More recent
work (Diehl & Cook, 2015) has combined a layer of unsupervised
STDPwith an explicit layer of non-learning inhibitory neurons. The

inhibitory neurons impose aWTA discipline. Their representations
were tested on the handwritten MNIST dataset and have been
shown to be effective for recognition of such digits. The acquired
representations tended to resemble MNIST prototypes, although
their reconstructive propertieswere not directly studied. Shrestha,
Ahmed, Wang, and Qiu (2017) also studied a spiking network with
stochastic neurons that performsMNIST classification and acquires
MNIST prototype representations. Their architecture is a 3-layer
network where the hidden layer uses a soft WTA to implement
inhibition. Since there is no functional need to introduce an explicit
inhibitory layer if there is no learning, our work uses a softmax
function (Bishop, 1995; Goodfellow, Bengio, & Courville, 2016)
to achieve WTA inhibition. In our work, the standard softmax is
adapted to a spiking network. Our acquired representations, when
trained on theMNIST dataset, acquires representations resembling
V1-like receptive fields, in contrast to the MNIST prototypes of the
research described above.

Other works related to spike-based clustering and vector
quantization are the evolving SNNs (eSNNs and deSNNs) of
Kasabov, Dhoble, Nuntalid, and Indiveri (2013), Schliebs and
Kasabov (2013), Soltic and Kasabov (2010), Wysoski, Benuskova,
and Kasabov (2008) and Wysoski, Benuskova, and Kasabov
(2010) which acquire representations via a recruitment learning
paradigm (Grossberg, 2012) where neurons are recruited to par-
ticipate in the representation of the new pattern (based on simi-
larity or dissimilarity to preexisting representations). In the deSNN
framework, if a new online pattern is sufficiently similar to an al-
ready represented pattern, the representations aremerged to form
a cluster. This later work uses a number of bio-plausible mech-
anisms, including spiking neurons, rank-order coding (Thorpe &
Gautrais, 1998), a variant of STDP, and dynamic synapses (Maass
& Markram, 2002).

The present research proposes event-based, STDP-type rules
embedded in a single layer SNN for spatial feature coding. Specif-
ically, this paper proposes a novel STDP-based representation
learningmethod in the spirit of Burbank (2015), Masquelier (2012)
and Zylberberg et al. (2011). Its learning rules are local in time and
space and implement an approximation to clustering-based, vector
quantization (Coates & Ng, 2012) using the SNN while controlling
the sparseness and independence of visual codes. Local in time
means that the information to modify the synapse is recent, say
within at most a couple of membrane time constant of the postsy-
naptic spike that triggers the STDP. By local in space, wemean that
the information used tomodify the synaptic weight is, in principle,
available at the presynaptic terminal and the postsynaptic cell
membrane. Our derivation uses a continuous-time formulation
and takes the limit as the length of the stimulus presentation
interval tends to one time step. This leads to STDP-type learning
rules, although they differ from the classic rules found in Caporale
and Dan (2008) and Masquelier (2012). In this sense, the rules and
resulting visual codingmodel are novel. Independence and sparsity
are also maintained by an implicit inhibition and a new threshold
adjustment rule implementing a WTA circuit.

2. Background

Földiák (1989) developed a feedforward network with anti-
Hebbian interconnections for visual feature extraction. The Heb-
bian rule in hismodel, shown in Eq. (1), is inspired fromOja’s learn-
ing rule (Oja, 1982) that extracts the largest principal component
from an input sequence,

∆wji ∝ (yjxi − wjiy2j ) (1)

yj =

∑
i

xiwji (2)
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