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a b s t r a c t

Video image recognition has been extensively studied with rapid progress recently. However, most
methods focus on short-term rather than long-term (contextual) video recognition. Convolutional re-
current neural networks (ConvRNNs) provide robust spatio-temporal information processing capabilities
for contextual video recognition, but require extensive computation that slows down training. Inspired
by normalization and detrending methods, in this paper we propose ‘‘adaptive detrending’’ (AD) for
temporal normalization in order to accelerate the training of ConvRNNs, especially of convolutional gated
recurrent unit (ConvGRU). For eachneuron in a recurrent neural network (RNN), AD identifies the trending
change within a sequence and subtracts it, removing the internal covariate shift. In experiments testing
for contextual video recognition with ConvGRU, results show that (1) ConvGRU clearly outperforms
feed-forward neural networks, (2) AD consistently and significantly accelerates training and improves
generalization, (3) performance is further improved when AD is coupled with other normalization
methods, and most importantly, (4) the more long-term contextual information is required, the more
AD outperforms existing methods.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Convolutional neural networks (CNNs) (Lecun, Bottou, Bengio,
& Haffner, 1998) show remarkable performance on the ImageNet
challenge dataset, consisting of 1000 classes and 1.2 million train-
ing images (Krizhevsky, Sutskever, & Hinton, 2012). Encouraged
by this success, several approaches exploit the spatial processing
capability of CNNs in video recognition tasks (Simonyan & Zisser-
man, 2014; Tran, Bourdev, Fergus, Torresani, & Paluri, 2015). Two-
stream CNNs (Simonyan & Zisserman, 2014) and convolutional
3D (C3D) networks (Tran et al., 2015) are the most commonly
used networks. Two-stream CNNs combine classification abilities
of spatial- and temporal-stream networks, being composed of
a spatial-stream network that processes individual RGB frames
and a temporal-stream network that processes stacked optical
flow over several frames. C3D networks extend 2D convolution to
3D convolution by adding time as a third dimension, processing
stacked consecutive RGB frames. However, both networks employ
a stacking strategy that utilizes only a limited number of tem-
poral correlations between stacked frames in order to recognize
videos. Once the temporal window advances to the next position,
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information from the previous stack is completely dropped. This
creates a problem of contextual recognition that requires the ex-
traction of long-range temporal correlations (Jung, Hwang, & Tani,
2015).

In this paper, we attempt to overcome this limitation us-
ing recently introduced convolutional recurrent neural networks
(ConvRNNs) that replace the weight multiplication of RNNs with
convolution in order to exploit spatial and temporal information
processing capabilities of CNNs and recurrent neural networks
(RNNs), respectively (Ballas, Yao, Pal, & Courville, 2015; Kalchbren-
ner et al., 2016; Shi et al., 2015). By extracting spatio-temporal
features hierarchically, ConvRNNs handle complex problems in
the space-time domain, such as precipitation nowcasting (Shi et
al., 2015), video recognition (Ballas et al., 2015), and video pre-
diction (Kalchbrenner et al., 2016). Also, problems restricted to
the spatial domain can be handled by ConvRNNs in an iterative
manner (Romera-Paredes & Torr, 2016). For example, in instance
segmentation, ConvRNNs sequentially segment one instance of
an image at a time (Romera-Paredes & Torr, 2016). However,
training ConvRNNs is painfully slower than training feed-forward
CNNs, which receive a single frame or stacked multiple frames
for video recognition, because recurrent connections require addi-
tional computation.Moreover, it is hard to parallelize computation
of ConvRNNs due to the sequential nature of RNNs, which require
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Fig. 1. Example of conventional detrending with Brazilian GDP. The detrended
output is obtained by subtracting the trend from the original input. In this example,
we use an exponential moving average (EMA) with a fixed decay factor of 0.95 to
define the trend.

computations from previous time steps in advance for computing
the current time step. Thus, finding away to achieve faster learning
convergence has been a barrier to practical development of Con-
vRNNs.

Ioffe and Szegedy (2015) argue that internal covariate shift is
responsible for the increased training time in feed-forward neural
networks, includingmulti-layer perceptrons (MLPs) and CNNs, and
they suggest batch normalization (BN) to normalize the input dis-
tribution of a neuron for eachmini-batch, as a way to reduce train-
ing time. BN successfully removes internal covariate shift, thereby
significantly accelerating training with improved generalization,
and this technique has become standard for training feed-forward
neural networks. Some studies use BNwith RNNs because unrolled
RNNs over time can be seen as deep neural networks in terms of
time aswell as depth (Cooijmans, Ballas, Laurent, &Courville, 2017;
Laurent, Pereyra, Brakel, Zhang, & Bengio, 2016). However, BN is
incompatible with RNNs, regardless of computing global statistics
along the time domain (Laurent et al. 2016) or local statistics at
each time step (Cooijmans et al., 2017). Use of global statistics
ignores statistics at each time step, but use of local statistics does
not accommodate training sequences of variable lengths. As an
alternative, layer normalization (LN) (Ba, Kiros, & Hinton, 2016)
eliminates dependencies betweenmini-batch samples that obviate
the use of BN with RNNs. LN computes statistics over all neurons
in each layer and accelerates training of RNNs and MLPs, but not
CNNs. Neither BN nor LN is generally applied to ConvRNNs.

The current paper focuses on the time domain in order to
accelerate training of ConvRNNs. Much of time series analysis
and many forecasting methods can be applied only to stationary
time series. Detrending transforms non-stationary time series to
stationary series by identifying the change as a trend and removing
it. This method is straightforward, and is illustrated in the context
of the Brazilian gross domestic product1 in Fig. 1. The current
research applies this method to normalize sequences of neurons
in RNNs. Our key insight here is that the hidden state of a gated
recurrent unit (GRU) (Cho et al., 2014) can be considered as a
trend that can be approximated by the form of an exponential
moving averagewith an adaptively changingdecay factor. Basedon
this insight, we propose a novel temporal normalization method,

1 http://www2.stat.duke.edu/~mw/data-sets/ts_data/brazil_econ.

‘‘adaptive detrending’’ (AD), for use with GRU and convolutional
gated recurrent unit (ConvGRU), which is a variant of ConvRNNs
extended from GRU. The implications of AD are fourfold:

• AD is easy to implement, reducing computational cost and
consuming less memory than competing methods.

• AD eliminates temporal internal covariate shift.
• AD controls the degree of detrending (or normalization)

through decay factor adaptability.
• AD is fully compatiblewith existing normalizationmethods.

2. Background

2.1. Batch normalization

Internal covariate shift slows training of deep neural networks,
because the distribution of layer inputs changes continuously as
lower layer parameters are updated. Batch normalization (BN)
(Ioffe & Szegedy, 2015) has recently been proposed to reduce inter-
nal covariate shift by normalizing network activation as follows:
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yi = γ x̂i + β (4)

where x is the activations of a neuron in a mini-batch of size m,
µ and σ 2 are the mean and variance of a mini-batch, respectively,
x̂ is normalized input, ϵ is an infinitesimal constant for numerical
stability, and y is an affine transformation of normalized inputs x̂.
During training, the input distribution to a layer is transformed to
a fixed distribution with a zero mean and unit variance, regardless
of the change in parameters of lower layers. Additionally, an affine
transformation with two learnable parameters γ and β follows
normalization in order to recover the original activation when
required. BN accelerates training and improves generalization of
CNNs on ImageNet classification tasks.

Due to its success in feed-forward neural networks, BN has
been applied to RNNs to speed training and improve generalization
(Cooijmans et al., 2017; Laurent et al., 2016). In Laurent et al.
(2016), BN is applied only to vertical (input-to-hidden) and not to
horizontal (hidden-to-hidden) connections because the repeated
rescaling of horizontal connections induces vanishing and explod-
ing gradient problems. Also, themean and variance for BN are com-
puted by averaging along not only the mini-batch axis but also the
time axis, which is called ‘‘sequence-wise normalization’’. On the
other hand, Cooijmans et al. (2017) develop ‘‘step-wise normaliza-
tion’’ and show that (1) applying BN to horizontal aswell as vertical
connections is possible by properly initializing γ of an affine trans-
formation and beneficial for reducing temporal internal covariate
shift, and (2) using statistics for each time step separately preserves
initial transient phase information. However, with this method,
estimation of statistics at each time step degrades along the time
axis due to variation in length of training and test sequences.
During training, mini-batch configuration involves the use of zero,
or last framepadding for shorter sequences. Furthermore, statistics
for each time step are estimated only up to the length of the longest
training sequence Tmax. After training, accurate statistics for test
sequences longer than the longest training sequence Tmax cannot
be generated. Due to these factors, performance suffers.
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