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a b s t r a c t

This paper addresses the problem of finite-time synchronization of stochastic coupled neural networks
(SCNNs) subject to Markovian switching, mixed time delay, and actuator saturation. In addition, coupling
strengths of the SCNNs are characterized bymutually independent randomvariables. By utilizing a simple
linear transformation, the problem of stochastic finite-time synchronization of SCNNs is converted into a
mean-square finite-time stabilization problemof an error system. By choosing a suitablemode dependent
switched Lyapunov–Krasovskii functional, a new set of sufficient conditions is derived to guarantee the
finite-time stability of the error system. Subsequently, with the help of anti-windup control scheme, the
actuator saturation risks could bemitigated.Moreover, the derived conditions help to optimize estimation
of the domain of attraction by enlarging the contractively invariant set. Furthermore, simulations are
conducted to exhibit the efficiency of proposed control scheme.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Network systems have recently received considerable atten-
tion due to their increasing demand on many real-time systems
(Hunt, Irwin, & Warwick, 1995; Peng, Yue, & Han, 2015). More
specifically, the study of neural networks has gained significant
attention because it is not only a question of theoretical interest
to mathematicians but also plays an indispensable role in broad
range of practical applications in various fields, such as neural
circuit in brain, food web in ecosystem and internet in commu-
nication networks (Ahn, Shi, & Wu, 2015; Park, Kwon, & Seuret,
2017; Zineddin, Wang, & Liu, 2011). Though several studies on
neural networks, the actual impact of coupling behaviour in such
systems is just beginning, much work to be done. In particular,
coupled neural networks (CNNs) may exhibit more complicated
and unpredictable behaviours, but their analysis helps to imitate
system behaviours better than the traditional neural networks
(Manivannan, Samidurai, Cao, Alsaedi, & Alsaadi, 2018; Sakthivel,
Anbuvithya, Mathiyalagan, Ma, & Prakash, 2016; Wang, Teng, &
Jiang, 2012; Zheng & Cao, 2014). On the other hand, as a typical
collective behaviour of networks, synchronization has received
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increasing attention (Cai, Huang, & Zhang, 2017; Fang& Park, 2013;
Huang, Li, Huang, & He, 2014; Lee, Park, Kwon, & Sakthivel, 2016;
Xu, Wang, & Wei, 2017; Zhang & Gao, 2017). To date, most of the
existing literature results related to the synchronization analysis
of CNNs, the coupling strength has been assumed to be deter-
ministic. This assumption is, however, heavily limited as almost
all real-world network applications because of the complicated
environment nature. Indeed, the coupling strength of networks is
stochastic. Moreover, the dynamics of neural networks consist of
a vast myriad of interacting components, whose internal details
are too probabilistic. Nonetheless, the study of synchronization of
stochastic coupled neural networks (SCNNs) is still in its infancy
(Bao, Park, & Cao, 2016; Samidurai & Manivannan, 2016).

Meanwhile, the realistic modelling of many neural networks
inevitably needs to take into account of random abrupt state
switching caused by the sudden environment changes or the struc-
tural and parametric changes of systems. But, the dynamics of
neural networks with random switching cannot be appropriately
described by the commonly used linear time-invariant state space
representation. However, the switching signal between different
neural network modes can be represented by using the Markov
process. In Markovian type pattern, the future action depends only
on the current action not all past actions, so it requires only short
memories, for instance see Li, Shi, andWu (2017) andWang, Zhang,
and Yan (2015). In addition, Markov process is highly suitable
for many real-time networks, such as communication networks,
electric networks, and aerospace networks (Li, Shi, Wu, Basin, &
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Lim, 2015; Liu, Wang, Liang, & Liu, 2013; Yang, Cao, & Lu, 2013;
Zhu & Cao, 2011, 2012). In Park, Kwon, Park, and Lee (2012), a
sufficient condition has been derived in the framework of linear
matrix inequalities (LMIs) for ensuring the stability of a class of
fuzzy Markovian jumping Hopfield neural networks described by
neutral-type differential equations.

Actuator saturation is one of the most important non-smooth
input nonlinearities in the control system design and analysis. For
some highly complex network systems, it is difficult to deliver
arbitrarily large signals through real actuators. So, neglecting the
actuator saturation phenomenon can consequently be the source
of unwanted or even catastrophic actions in the closed-loop sys-
tem. The study of control analysiswith actuator saturation initiated
for the past few decades, but recently, research in this direction has
seen a revival in neural network systems (Wang, Qiu, & Gao, 2017;
Wu, Shi, Su, & Chu, 2014;Wu, Su, &Wu, 2015). Onewidely adopted
method for handling the actuator saturation is anti-windup con-
trol scheme. It was observed that when the control input signal
reaches beyond the saturation limits the control input signal wind
up, which leads difficulty to fulfil the control objective by using
classical linear feedback controllers. Therefore, to tolerate that
negative performance due to wind up effect is tolerated with the
aid of anti-wind up control scheme. Under this control scheme,
the control signal is represented the linear combination of actual
and auxiliary linear feedback signals, which reveals the highly
better performance compared with the conventional control per-
formance against wind up effect (Li, Wang, & Shi, 2016; Pan, Sun,
Gao, & Jing, 2016; Selvaraj, Kaviarasan, Sakthivel, & Karimi, 2017;
Wu et al., 2014; Yang, Zhang, & Sun, 2016).

On another research frontier, synchronization is one of the fun-
damental tasks in network systems because of its immense appli-
cations in various fields, such as communication networks, biologi-
cal networks, chemical reactions and heartbeat regulation. To date,
various kinds of synchronization problems, such as asymptotic
synchronization, exponential synchronization, pinning distributed
synchronization and finite-time synchronization have been inves-
tigated in the literature (Chen, Shi, & Lim, 2017; Tang, Gao, Lu,
& Kurths, 2014; Wu, Shi, Su, & Chu, 2013). Though there have
beenmany results concerning the asymptotic synchronization and
exponential synchronization of network systems, in which the
synchronization can only be realized when time tends to infinity,
many practical applications need to achieve the synchronization as
quickly as possible and to guarantee the fast response. To shorten
the convergence time of error states still further, an effective tech-
nique is finite-time synchronization or finite-time boundedness
(Liu, Ho, Cao, & Xu, 2017; Liu, Ho, Song, & Cao, 2017;Mathiyalagan,
Park, & Sakthivel, 2016; Wang & Zhu, 2015; Wu, Cao, Li, Alsaedi,
& Alsaadi, 2017; Yang & Huang, 2017). In addition, finite-time
boundedness condition possesses some additional nice features
with finite-time synchronization, such as better robustness and
disturbance rejection properties. Based on these facts and demon-
strations, finite-time synchronization is more powerful in neural
networks.

Inspired by the above discussion, in this paper, by utilizing
Lyapunov stability theory, we examine the finite-time synchro-
nization problem of SCNNs with Markovian jump parameters,
mixed time-varyingdelays and actuator saturation effect. Themain
contributions of this paper are highlighted as follows:

1. By taking the effects of actuator saturation and stochastic
coupling strength into account, a new anti-windup state
feedback controller is proposed for SCNNs. Also, the suffi-
cient conditions are established to verify the finite-time syn-
chronization of SCNNs. Therefore, the proposed controller is
more suitable to apply for many practical network systems.

2. The proposed synchronization criteria are dependent not
only on all the mode delays but also on the generator of
the Markovian chain, stochastic noise, mathematical ex-
pectation, and variance of the random coupling strength
variables.

3. Based on the proposed criterion, the state-feedback con-
troller is designed and an optimal estimation of attraction
regions is obtained to the feasible solutions of a set of LMI
constraints.

Finally, a numerical example is provided to demonstrate the effec-
tiveness of the proposed theoretical results.

Notation: Throughout this paper, the used notations are stan-
dard. Rn denotes the n-dimensional Euclidean vector space, and
Rm×m is the set of all m × m real matrices. If P is a symmetric
matrix, λmax(P) and λmin(P) denote the maximum and minimum
eigenvalues of P , respectively. I represents the identity matrix
with appropriate dimensions. The Kronecker product of matrices
A ∈ Rl×n and B ∈ Rp×q is a matrix in Rlp×nq and denoted
as (A ⊗ B). The asterisk ‘∗’ represents a term that is induced
by symmetry. E{·} denotes the mathematical expectation and ql
denotes

[
0n×(l−1)n, In, 0n×(26−l)n

]
. Pr{·} represent the probability

function. Denote the sets Ω(P, δ) = {x ∈ Rn
: xT (t)Px(t) ≤ δ} and

L(F ) := {x ∈ Rn
: |flx| ≤ 1, l = 1, 2, . . . , n} as an ellipsoid and a

polyhedral, respectively, where P is a positive definite matrix, and
fl is the lth row of the matrix F ∈ Rn×n.

2. Preliminaries and problem formulation

2.1. Mathematical preliminaries

To introduce some basic strategy of reconstructing networks,
we first consider the stochastic system in the following form:

dx(t) = α(x(t), r(t))dt + ς (x(t), r(t))dw(t), (1)

where α(·) and ς (·) are vector valued nonlinear functions, x(t) is
the state vector, {w(t), t ≥ 0} stands for an n-dimensional stan-
dard Brownian motion defined on a complete probability space
(Ω,F, {Ft}t≥0,P), where Ω is a sample space, F is a field with
the natural filtration {Ft}t≥0, and P is a probability measure on F .
Moreover, the Brownianmotion {w(t), t ≥ 0} satisfies E{dw(t)} =

0 and E{dw(t)2} = dt . Further, the random jumping process
{r(t), t ≥ 0} is a right-continuousMarkovian process taking values
in a finite setS = {1, 2, . . . ,M} in themode transitionprobabilities
space (Ω ′, G,P), where Ω ′ is the sample space, G is the algebra of
events and P is the probability measure defined on G. The mode
transition probabilities are described as follows:

Pr{r(t + dt) = q|r(t) = p} =

{
πpqd(t) + O(dt), if p ̸= q,
1 + πpqdt + O(dt), if p = q,

where dt > 0 and limdt→0
O(dt)
d(t) = 0, πpq ≥ 0 is the transition

rate from mode p at time t to mode q at time t + dt if p ̸= q
and πpp = −

∑M
q=1,p̸=qπpq, ∀p ∈ S. Moreover, we assume that the

Brownian motion {w(t), t ≥ 0} is independent from the Markov
chain {r(t), t ≥ 0}.

2.2. Problem formulation

Consider a class of stochastic Markovian jump coupled neural
networks with mixed mode-dependent time-varying delays and
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