
Neural Networks 105 (2018) 277–293

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Global exponential stability of octonion-valued neural networks with
leakage delay and mixed delays
Călin-Adrian Popa
Department of Computer and Software Engineering, Polytechnic University Timişoara, Blvd. V. Pârvan, No. 2, 300223 Timişoara, Romania

a r t i c l e i n f o

Article history:
Received 19 November 2017
Received in revised form 12 March 2018
Accepted 4 May 2018

Keywords:
Octonion-valued neural networks
Distributed delays
Global stability
Linear matrix inequalities

a b s t r a c t

This paper discusses octonion-valued neural networks (OVNNs) with leakage delay, time-varying delays,
and distributed delays, for which the states, weights, and activation functions belong to the normed divi-
sion algebra of octonions. The octonion algebra is a nonassociative and noncommutative generalization of
the complex and quaternion algebras, but does not belong to the category of Clifford algebras, which are
associative. In order to avoid the nonassociativity of the octonion algebra and also the noncommutativity
of the quaternion algebra, the Cayley–Dickson construction is used to decompose the OVNNs into 4
complex-valued systems. By using appropriate Lyapunov–Krasovskii functionals, with double and triple
integral terms, the free weighting matrix method, and simple and double integral Jensen inequalities,
delay-dependent criteria are established for the exponential stability of the considered OVNNs. The
criteria are given in terms of complex-valued linear matrix inequalities, for two types of Lipschitz
conditions which are assumed to be satisfied by the octonion-valued activation functions. Finally, two
numerical examples illustrate the feasibility, effectiveness, and correctness of the theoretical results.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Neural networks with values in multidimensional domains
have attracted the attention of researchers over the last few years.
First introduced by Widrow, McCool, and Ball (1975), complex-
valued neural networks (CVNNs) have found numerous applica-
tions, which include antenna design, radar imaging, estimation of
direction of arrival and beamforming, image processing, commu-
nications signal processing, and many others (Hirose, 2012, 2013).
Quaternion-valued neural networks (QVNNs) were introduced by
Arena, Fortuna, Occhipinti, and Xibilia (1994), and have applica-
tions in chaotic time-series prediction (Arena, Fortuna, Muscato,
& Xibilia, 1998), color image compression (Isokawa, Kusakabe,
Matsui, & Peper, 2003), color night vision (Kusamichi, Isokawa,
Matsui, Ogawa, & Maeda, 2004), polarized signal classification
(Buchholz & Le Bihan, 2008), and 3Dwind forecasting (Jahanchahi,
Took, & Mandic, 2010; Took, Mandic, & Aihara, 2010). Clifford-
valued neural networks (ClVNNs), proposed by Pearson and Bisset
(1992, 1994), and later discussed by Buchholz and Sommer (2008)
and Kuroe, Tanigawa, and Iima (2011), have potential applications
in high-dimensional data processing. They represent a general-
ization of the complex- and quaternion-valued neural networks,
because complex and quaternion algebras are special cases of the
2n-dimensional Clifford algebras, where n ≥ 1.
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A different generalization of the complex and quaternion alge-
bras is the octonion algebra. It is an 8-dimensional normed division
algebra, which means that a norm and a multiplicative inverse can
be defined on it. In fact, it is the only normed division algebra that
can be defined over the field of real numbers, besides the complex
and quaternion algebras. The octonion algebra is not a special kind
of Clifford algebra, because the Clifford algebras are all associative,
whereas the octonion algebra is not.

Octonions have applications in physics and geometry (Dray &
Manogue, 2015; Okubo, 1995), and have also been successfully ap-
plied in the signal processing domain in the recent years (Snopek,
2015). The signal processing applications include salient object
detection (Gao & Lam, 2014a, b), hyperspectral fluorescence data
fusion (Bauer & Leon, 2016), L1-norm minimization for octonion
signals (Wang, Xiang, & Zhang, 2016), and the octonion Fourier
transform (Błaszczyk & Snopek, 2017). In physics, octonions were
used to reformulate electrodynamics and chromodynamics equa-
tions (Chanyal, 2013; Chanyal, Bisht, Li, & Negi, 2012; Chanyal,
Bisht, & Negi, 2010, 2011), theMaxwell equations (Demir & Tanişli,
2016), the gravitational field equations (Demir, 2012), and the
Dirac equation (Koplinger, 2006).

Taking all the above facts into consideration, octonions may
have potential applications in the neural network domain, also.
Thus, feedforward octonion-valued neural networks (OVNNs)
were first proposed by Popa (2016). They may be applied in the
signal processing domain, where certain signals can be better
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represented in the octonion domain. High-dimensional data pro-
cessing could also benefit from the use of octonion networks. In
the same way as complex-valued networks were better than real-
valued ones for some applications, and quaternion-valued net-
workswere better than both real- and complex-valuednetworks in
others, octonion-valued networksmay outperform all of the above
in yet other problems. They could represent an alternative for
8-dimensional Clifford-valued neural networks, because of the
property of being a normed division algebra that the octonion alge-
bra has. Thus, themultidimensional algebras can constitute amore
general framework for neural networks, which could benefit not
only from increasing the number of hidden layers and making the
architecture ever more complicated, but also from increasing the
dimensionality of the data that is being handled by the network.
Themultidimensional neural networks field is rather new, and it is
expected that the future will bring even more applications for this
type of networks.

The practical applications of neural networks heavily rely on
their dynamical properties. To solve problems of optimization,
neural control, and signal processing, neural networks have to be
designed in such way that they exhibit only one globally stable
steady state. Thus, sufficient conditions can be determined, which
depend on the system parameters, that guarantee the existence of
a unique globally stable steady state for a certain neural network.

The stability properties of CVNNs were intensely studied in
recent years. The global asymptotic and exponential stability for
CVNNs with time delays were discussed by Hu and Wang (2012),
both by decomposing the complex numbers into their two real
components and directly in the complex domain. Sufficient con-
ditions for the stability of CVNNs with both leakage time delay
and discrete time delay on time scales were established by Chen
and Song (2013), by decomposition. Several conditions in terms of
real-valued linear matrix inequalities (LMIs) for the boundedness
and complete stability of CVNNs were developed by Zhou and
Song (2013). CVNN models with mixed delays were considered
by Xu, Zhang, and Shi (2014), for which exponential stability
criteria were given, also using the decomposition method. The
complete stability for CVNNs with time delays and impulses was
the concern of Rakkiyappan, Velmurugan, and Li (2014), who used
both decomposition and direct methods to undertake the analysis.
Zhang, Lin, and Chen (2014) gave a sufficient criterion for the global
asymptotic stability of delayed CVNNs in terms of real-valued LMIs.
New criteria for the existence, uniqueness, and global asymptotic
stability of the equilibrium point of CVNNs with time delays were
established by Fang and Sun (2014), in terms of complex-valued
LMIs.

Chen, Song, Liu, and Zhao (2014a, b) studied the global µ-
stability of CVNNs with unbounded time-varying delays and with
leakage delay,mixed delays, and impulses, respectively, both in the
real and complex domains. The problem of global µ-stability was
further analyzed by Velmurugan, Rakkiyappan, and Cao (2015),
and by Gong, Liang, and Cao (2015). Sufficient conditions for the
exponential stability of a class of CVNNs with time-varying de-
lays were also developed by Pan, Liu, and Xie (2015), by using a
delay differential inequality. CVNNs with time-varying delays and
impulsive effects were investigated by Song, Yan, Zhao, and Liu
(2016a), who used the direct method to give sufficient criteria in
terms of complex-valued LMIs for their exponential stability. A
delay-dependent condition expressed in terms of complex-valued
LMIs, which assures the global exponential stability for CVNNs
with both leakage delay and time-varying delays on time scales
was established by Song and Zhao (2016). Song, Yan, Zhao, and
Liu (2016b) gave several sufficient conditions for the global ex-
ponential stability of impulsive CVNNs with both asynchronous
time-varying and continuously distributed delays, which was also
the focus of Liu and Chen (2016). New asymptotic stability criteria

for delayed CVNNs were given by Zhang, Liu, Chen, Guo, and Zhou
(2017), both in terms of real-valued and complex-valued LMIs. The
same type of stability was studied by Subramanian and Muthuku-
mar (2017), for CVNNswith additive time-varying delays. Discrete-
time neural networks (Yang, Wu, & Liu, 2015) were also discussed
in the complex domain by Chen, Song, Zhao, and Liu (2016), Hu and
Wang (2015), Mostafa, Teich, and Lindner (2014) and Song, Zhao,
and Liu (2015).

QVNNs have also attracted the attention of researchers very
recently. The global µ-stability for QVNNs with unbounded time-
varying delays was first studied by Liu, Zhang, Lu and Cao (2016),
by splitting the quaternions in two complex numbers. QVNNswith
time-varying delays were also discussed by Liu, Zhang, and Lu
(2016), by decomposing the quaternions into their four real com-
ponents, and using theHalanay inequality to deduce sufficient con-
ditions for the exponential stability. Sufficient conditions for the
robust stability of the equilibrium point for QVNNs were derived
by Chen, Li, Song, Hu, and Tan (2017), directly in the quaternion
domain, using amodulus inequality technique for the quaternions.
The decomposition approach was used also by Zhang, Kou, Liu,
and Cao (2017) to study the stability of QVNNs with asynchronous
time delays. Shu, Song, Liu, Zhao, and Alsaadi (2017) used the same
method as Liu, Zhang, Lu&Cao (2016) to extend the stability results
for QVNNs with non-differentiable time-varying delays. Global
µ-stability was also the concern of Liu, Zhang, Lou, Lu, and Cao
(2017), who employed two methods to deduce sufficient stability
conditions: one by decomposition, and the other one directly in the
quaternion domain. Chen, Song, and Li (2017) used QVNNs to de-
sign associative memories in the quaternion domain. The authors
show that the constructed QVNNs work efficiently on storing and
retrieving blurred gray-scale and true color images. Multistability
and multiperiodicity conditions for impulsive QVNNs with mixed
delays were established by Popa and Kaslik (2018).

Lastly, ClVNNs are emerging as a field of study. The global
stability of ClVNNs with time delays was discussed by Liu, Xu,
Lu, and Liang (2015), by rewriting the Clifford-valued system of
differential equations as a real-valued one. The same model, but
without delays, was investigated by Zhu and Sun (2016), directly
in the Clifford domain.

Taking all the above into account, the aim of this paper is to
develop exponential stability criteria for OVNNs with leakage de-
lay, time-varying delays, and distributed delays. To the best of our
knowledge, this type of problem has not yet been discussed in the
literature. Because of the finite switching speed of amplifiers, de-
lays occur in real-life implementations of neural networks, and can
cause unstable or oscillatory behavior. For this reason, we consider
both bounded leakage delay, and bounded time-varying delays
in the OVNN model. On the other hand, distribution propagation
delaysmay appear as a consequence of a distribution of conduction
velocities along the pathways of a neural network implementation,
which compelled us to also add continuously distributed delays to
our model.

Using the Cayley–Dickson construction, the octonion-valued
system of equations that defines an OVNN is decomposed into 4
complex-valued differential systems, in order to avoid the nonas-
sociativity of the octonion algebra and also the noncommuta-
tivity of the quaternion algebra. Thus, by defining appropriate
Lyapunov–Krasovskii functionals with double and triple integral
terms, using the simple anddouble integral complex-valued Jensen
inequalities, and the free weighting matrix method, two stability
criteria are given in terms of complex-valued LMIs, which can
be easily solved using the effective YALMIP tool in MATLAB. The
reason we chose the complex-valued decomposition is because,
as can be seen from the above considerations, the complex-valued
stability theory of neural networks is already an established field,
and to avoid the cumbersome calculations implied by a decom-
position of octonions into their 8 real components. Also, the two
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