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a b s t r a c t

In this paper, we analyze the role of hidden bias in representational efficiency of the Gaussian-Bipolar
Restricted Boltzmann Machines (GBPRBMs), which are similar to the widely used Gaussian-Bernoulli
RBMs.Our experiments show that hiddenbias plays an important role in shaping of the probability density
function of the visible units. We define hidden entropy and propose it as a measure of representational
efficiency of the model. By using this measure, we investigate the effect of hidden bias on the hidden
entropy and provide a full analysis of the hidden entropy as function of the hidden bias for small models
with up to three hidden units. We also provide an insight into understanding of the representational
efficiency of the larger scale models. Furthermore, we introduce Normalized Empirical Hidden Entropy
(NEHE) as an alternative to hidden entropy that can be computed for large models. Experiments on the
MNIST, CIFAR-10 and Faces data sets show that NEHE can serve as measure of representational efficiency
and gives an insight on minimum number of hidden units required to represent the data.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, the subject of Restricted BoltzmannMachines (RBMs)
and deep learning became the focus of attention in machine
learning research. Application of deep learning in different areas
such as image processing, computer vision, and natural language
processing has proved its efficiency (Collobert & Weston, 2008;
Krizhevsky, 2009; Ranzato, Poultney, Chopra, & Cun, 2007). RBMs
are probabilistic generative models which are used to obtain new
(usually compressed) representation of the data. Different types of
RBMs are used as building blocks for deep neural architecture by
means of unsupervised layer-wise pre-training (Bengio, Lamblin,
Popovici, & Larochelle, 2006). However, RBMs with real-valued
inputs are of primarily importance as most of the analyzed data
is real-valued. Conventional Bernoulli–Bernoulli RBMs have been
studied in Cuartas (2012), Le Roux and Bengio (2008) andMartens,
Chattopadhya, Pitassi, and Zemel (2013)where they are referred as
universal approximators of any binary distribution. One of the first
Gaussian-Bernoulli RBM (GBLRBM)modelswith real-valued inputs
was proposed in Bengio et al. (2006) andHinton and Salakhutdinov
(2006), and was explicitly analyzed in Krizhevsky (2009). Another
version of a GBLRBM with a more intuitive energy function was
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proposed in Cho, Ilin, and Raiko (2011). Moreover, a more simpli-
fied sub-type of the latter model was analyzed in Melchior (2012)
and Wang, Melchior, and Wiskott (2012).

Despite the ongoing research in this field, still not much is
knownabout the principle of operation ofGBLRBMs. Combinatorial
nature of the model makes the analysis even harder. Nevertheless,
conceptual understanding of GBLRBMs is given inMelchior (2012).
The thesis has a well-described comparison to a Gaussian mixture
model and a good visualization of the modeled distribution that
gives an insight into the principle of operation of GBPRBMs. How-
ever, the thesis lacks analysis of hidden bias and its effect on the
modeled probability density function. The effect of the biases and
the mean of the data on the learning process was investigated in
Melchior, Fischer, and Wiskott (2016) and Montavon and Müller
(2012). Visible andhiddenoffsets are used to center theRBMmodel
and make learning more stable.

Another interesting visualization of RBMs is given in Yosinski
and Lipson (2012). Debugging of the RBMs is done by visualizing
weight parameters as a tensor in a cube filledwith small cells. Eval-
uation of histograms of the parameters on the mini-batch helps
finding optimal stopping point for the training process. Disap-
pearance of Gaussian-like shapes of the histograms indicates that
training has converged to a stationary phase. This phenomenon
was analyzed in Dieleman and Schrauwen (2012). A measure of
non-Gaussianity based on negentropy and excess kurtosis was
proposed as a stopping criterion for the training.
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The problem of measuring usefulness of the hidden neurons
was investigated in Berglund, Raiko, and Cho (2014), Le Roux and
Bengio (2008) and Martens et al. (2013). The first two papers
describe the effect of augmenting hidden layer on the represen-
tational efficiency of Bernoulli–Bernoulli RBMs. In the latter paper,
mutual information between visible and hidden units is suggested
as a measure of relevant activity of the hidden units. Usefulness
of the hidden neurons is also tested by pruning neurons after
training and by adding neurons during training. The results show
that models initialized with a large number of hidden units can
be simplified by pruning neuronswithout decreasing classification
performance.

Nowadays, most of the research in deep learning is concen-
trated on application of RBMs and speeding up the training pro-
cess. Fundamental questions remain still unanswered. What is a
good measure for usefulness of the hidden neurons? How does
the hidden bias affect the representational efficiency of the RBM
model?What is the number of hidden neurons needed to represent
the data? We try to answer these questions by introducing a new
Gaussian-Bipolar RBM (GBPRBM) model, in which we investigate
representational efficiency of hidden units in defining distribution
of the visible units. Thismodel is very similar to Gaussian-Bernoulli
RBM except that it has a more symmetrical geometry which facil-
itates hidden entropy analysis described in Section 3.

Our contributions are summarized as follows:

• In Section 3, we define hidden entropy function and propose
it as a measure of representational efficiency of GBPRBM
models. We demonstrate how hidden bias shapes probabil-
ity distribution of visible units.Moreover,wepresent a list of
conditions needed to attain maximum hidden entropy. Also
we provide a full analysis of the hidden entropy function
for models with up to three hidden units. In this analysis,
regions of high hidden entropy are given analytically in
terms of other model parameters. This analysis provides
an intuition to visualize hidden entropy space in higher
dimensions.

• In Section 4, we propose a technique to measure activations
of hidden units by defining Normalized Empirical Hidden
Entropy (NEHE) function as an upper bound to the hidden
entropy. This function allows to analyzemodels with higher
number of hidden units. BymeasuringNEHE on theGBPRBM
models trained using MNIST, CIFAR-10 and Faces data sets,
we illustrate how number of hidden units affects represen-
tational efficiency of the GBPRBM models. This experiment
gives an insight on the minimum number of hidden units
needed to represent the data.

Findings and derivations in the paper are presented using ex-
amples. The reference GBPRBM model given in Section 2.1 and its
derivative models with smaller number of hidden and visible units
are used in visualization of the probability of visible units and the
hidden entropy function.

2. Gaussian-Bipolar restricted Boltzmann machines

Gaussian-Bipolar Restricted Boltzmann Machine (GBPRBM) is
an undirected graphical model which is used to model relation
between visible and hidden units in a probabilistic way. GBPRBMs
have real-valued inputs in the visible layer and binary units in the
hidden layer.

Let the input vector with real-valued visible units be of size V
such that v = [v1 v2 . . . vV ]

T . Binary hidden units are constrained
to have antipode values {−1, 1} and grouped into a column vector
h = [h1 h2 . . . hH ]

T with H being the number of hidden units.
For notational consistency, visible units are represented by vectors

v,u, hidden units — by vectors f,h, g throughout the paper. Sub-
scripts i, j are reserved for visible and hidden units, respectively.

Twomore parameters are associatedwith visible units. The first
one is visible bias term bv

i and the second one is visible variance
term σi where i ∈ {1, . . . , V }. Bias terms are also present in the
hidden units as: bhj , j ∈ {1, . . . ,H}. Visible and hidden units are
connected using weights wij, i ∈ {1, . . . , V }, j ∈ {1, . . . ,H}. The
relationship between visible and hidden units is described by the
energy function

E(v,h) =
1
2
(v − bv)TΣ−1(v − bv) − vTΣ−1Wh − bT

hh, (1)

which is defined similarly for the Gaussian-Bernoulli RBM model
in Cho et al. (2011) with parameters

W =

⎡⎢⎢⎣
w1,1 w1,2 · · · w1,H
w2,1 w2,2 · · · w2,H

...
...

. . .
...
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⎡⎢⎢⎢⎣
σ 2
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0 σ 2

2 · · · 0
...

...
. . .

...

0 0 · · · σ 2
V

⎤⎥⎥⎥⎦,

bv =
[
bv
1, b

v
2, . . . , b

v
V
]T

, bh =
[
bh1, b

h
2, . . . , b

h
H

]T
. (2)

The energy function is used to define joint probability density
function (pdf) of v and h

p(v,h) =
exp(−E(v,h))∫

u
∑

g exp(−E(u, g))du
, (3)

where
∫
u(. . . )du is integration over all space of visible units and∑

g is summation over all 2H configurations of hidden vector
g. Likewise, conditional probability of the visible vector v given
hidden vector h is defined as

p(v|h) =
p(v,h)
p(h)

=
exp(−E(v,h))∫

u exp(−E(u,h))du
= N (v; [bv + Wh], Σ) , (4)

where N (v; µ,Σ) is a multivariate Gaussian distribution with
mean vector µ and covariance matrix Σ. Since Σ is diagonal,
the conditional pdf can be represented as product of marginal
conditional pdfs of each visible unit:

p(v|h) =

V∏
i=1

N
(
vi; [bv

i + W(i,:)h], σ 2
i

)
=

V∏
i=1

p(vi|h). (5)

Detailed derivations of p(v|h) can be found in Appendix A.1.

2.1. Data modeling using probability of visible units

Restricted Boltzmann machines have been used as unsuper-
vised learning algorithms to extract latent features and to model
the data distribution. This corresponds to clustering in the space
of visible units and encoding each cluster using hidden units.
Nevertheless, RBMs are probabilistic models, and a more straight-
forward interpretation of the data modeling is representing the
data distribution as probability of visible units p(v). The proposed
GBPRBM has a probability of visible units given as

p(v) =

∑
h

p(h)p(v|h)

=

∑
h

p(h) × N (v; [bv + Wh], Σ) . (6)

This implies that a GBPRBM models the probability of observing v
as a Gaussian Mixture Model (GMM). Every Gaussian component
with covariance matrix Σ is scaled by mixture weight p(h) and
located at [bv + Wh].

Visualizations of p(v) of submodels with dimension V equal to
1, 2 and 3 are shown in Fig. 1. In order to exemplify and visualize
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