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a b s t r a c t

By introducing sign constraints on the weights, this paper proposes sign constrained rectifier networks
(SCRNs), whose training can be solved efficiently by the well known majorization–minimization (MM)
algorithms. We prove that the proposed two-hidden-layer SCRNs, which exhibit negative weights in the
second hidden layer and negative weights in the output layer, are capable of separating any number of
disjoint pattern sets. Furthermore, the proposed two-hidden-layer SCRNs can decompose the patterns
of each class into several clusters so that each cluster is convexly separable from all the patterns from
the other classes. This provides a means to learn the pattern structures and analyse the discriminant
factors between different classes of patterns. Experimental results are provided to show the benefits of
sign constraints in improving classification performance and the efficiency of the proposedMMalgorithm.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, deep neural networks have achieved outstand-
ing performance in various applications such as object recogni-
tion (He, Zhang, Ren, & Sun, 2015; Huang, Liu, Weinberger, &
van der Maaten, 2017; Krizhevsky, Sutskever, & Hinton, 2012;
Lee, Xie, Gallagher, Zhang, & Tu, 2015; Zeiler & Fergus, 2014),
face verification (Sun, Chen, Wang, & Tang, 2014; Taigman, Yang,
Ranzato, & Wolf, 2014), speech recognition (Deng et al., 2013;
Hinton et al., 2012; Seide, Li, & Yu, 2011) and handwritten digit
recognition (Ciresan, Meier, & Schmidhuber, 2012). These practical
successes of deep neural networks have fuelled increased research
into the optimization theory of neural networks, and many theo-
reticalworks have been reported to address questions, such aswhy
local search methods as simple as gradient-based methods can
train deep neural networks successfully, despite the inherent non-
convexity of the associated optimization problem. Both encour-
aging and discouraging results have been reported. For shallow
neural networks with one hidden layer, it has been shown that,
if the network is over-parameterized, and large enough compared
to the data size, then there are no bad local minima (Boob & Lan,
2017; Haeffele & Vidal, 2015; Livni, Shalev-Shwartz, & Shamir,
2014; Nguyen & Hein, 2017; Poston, Lee, Choie, & Kwon, 1991;
Soltanolkotabi, Javanmard, & Lee, 2017; Soudry & Carmon, 2016).
For deep neural networks, Kawaguchi (2016) shows that there is
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no bad local minima during the training of deep linear networks,
wherein the activation function is linear. For nonlinear activation
functions, such as rectifier and max pooling, when the activation
patterns of all the training data are fixed, deep nonlinear networks
reduce to deep linear networks, and thus local minima do not
exist either. However, these encouraging results are either under
unreasonable assumptions or limited to shallow neural networks
with one hidden layer. On the other hand, it has been shown
that local minima occur commonly even for the simplest single-
hidden-layer rectifier neural networks (Safran & Shamir, 2017)
when minimizing the expected loss of inputs with a Gaussian
distribution, or even with a single neuron (Auer, Herbster, & War-
muth, 1996)whenminimizing the average loss over somearbitrary
finite dataset. These discouraging results imply that, in general,
local minima do exist for the optimization of neural networks. To
explain the success of gradient methods in training deep neural
networks, further research is required to find reasonable condi-
tions under which bad local minima do not exist or the risk of
being stuck in bad local minima is not severe. Recent research
has discovered that some non-convex optimization problems, in
machine learning, do not have bad local minima under reasonable
assumptions (Bhojanapalli, Neyshabur, & Srebro, 2016; Ge, Huang,
Jin, & Yuan, 2015; Ge, Lee, & Ma, 2016; Sun, Qu, & Wright, 2015),
but for neural networks, the reasonable conditions are yet to be
found. To find such conditions, the investigation of local convexity
properties such as the layerwise convexity and the piecewise con-
vexity might be required. A recent work (Ristera & Rubin, 2017)
has investigated the training of rectifier neural networks using the
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piecewise convexity property of the objective functions. It proved
that, when the objective functions are convex in the output layer
of rectifier neural networks, they are piecewise convex functions
of the parameters of each layer when the other parameters are
fixed. However, there is an exponentially large number of pieces,
for which the objective function is convex within each piece but
may not be convex across all the pieces.

Since local minima may be encountered when training con-
ventional neural networks (Auer et al., 1996; Safran & Shamir,
2017), this paper presents a new type of rectifier neural network,
whose cost function has layer-wise convex bounds so that the local
minima risk can be reduced using the well-known majorization–
minimization (MM) algorithm (Sun, Babu, & Palomar, 2017). In
the proposed two-hidden-layer sign constrained rectifier networks
(SCRNs), the weights of the second hidden layer and those of the
output layer are constrained to be non-positive. Despite these
constraints, this type of neural network is still capable of separating
any number of disjoint pattern sets (Section 4). When the sum of
hinge loss and a convex regularization term are used as the cost
function to train the proposed neural networks, the cost function
can be minimized using the MM algorithm, which is an iterative
optimization method exploiting partial convexities of a function
in order to avoid bad local minima. The MM algorithm operates
by finding a convex surrogate function which upperbounds the
objective function. Optimizing the surrogate function drives the
objective function downwards until a local optimum is reached.
For the training of SCRNs, we show that, with any initialization of
the parameters, there is a surrogate function that is convex as a
function of each layer’s parameters when all the other parameters
are fixed. Hence, each layer’sweights andbiases can be learnt alter-
natively using theMM algorithm. Furthermore, SCRNs can also de-
compose each pattern set into several clusters so that each cluster
is convexly separable from the patterns of the other classes (Sec-
tion 4). They can thus be used to learn the pattern structures and
analyse the discriminant factors between the patterns of different
classes. These techniques enable feature analysis for knowledge
discovery and for manual supervision to improve the efficiency
and performance in training the classifiers. Typical applications
include: (i) Feature discovery—In health and production manage-
ment of precision livestock farming (Wathes, Kristensen, Aerts, &
Berckmans, 2008), oneneeds to identify the key features associated
with diseases (e.g. hock burn of broiler chickens) on commercial
farms, using routinely collected farm management data (Hep-
worth, Nefedov, Muchnik, & Morgan, 2012); (ii) Supervised shape-
free clustering for knowledge discovery—The proposed SCRNs can
be used to separate each class of patterns into several clusters
(i.e., convex subsets) so that each cluster of the patterns is convexly
separable from other classes of patterns, wherein the clusters
are not required to be of any particular shape other than convex
polytopes; (iii) Human-supervised neural network training—The
proposed two hidden-layer SCRNs transform the input data into
convexly separable data using the first hidden layer. They further
transform the data into linearly separable data using the second
hidden layer. The decomposition properties of the SCRNs enable
human to visualize the patterns, identify the outliers, check the
separating boundaries and supervise the training by removing the
outliers or mislabelled data.

Main contributions. In summary, the main contributions of this
paper include:

• The introduction of sign constraints on the weights of neu-
ral networks in order to learn geometrically-interpretable
models (Sections 2–4). When sign constraints are imposed
on the weights of the proposed SCRNs, the first hidden
layer transforms the data to be convexly separable, while
the second hidden layer further transforms the data to be

Table 1
Performance (error rate) comparison between neural networks with sign con-
straints (SC) and those without constraints. BL stands for the baseline neural net-
work, while BN stands for the neural network with batch normalization layers.

Training Validation Testing

BL 0% 0.88% 0.91%
BL+SC 0% 0.81% 0.81%
BN 0% 0.80% 0.85%
BN+SC 0% 0.77% 0.75%

linearly separable. Consequently, every node is a concave
(or convex) function of the weights of the preceding hidden
layer. Since a concave (or convex) piecewise linear function
is the minimum (or the maximum respectively) of several
linear functions, the separating boundaries of the learnt
SCRN classifiers are thus the union of several hyperplanes.
This improves the geometrical interpretability of the classi-
fiers and can be used to analyse the discriminant features
between different classes of patterns. Our experimental re-
sults (Section 6) demonstrate that the learnt convex model,
through a sign constrained neural network, can be well
approximated by the minimum of several linear classifiers
in the feature space of the second last hidden layer. This
property can be used to analyse the key features of the learnt
classifiers.

• Sign constraints induce sparsity and improve classification
accuracy. Sign constraints move negative weights to be zero
and thus some weights of the learnt neural networks are
zero. This results in learning sparse neural networks, which
has potential to improve classification accuracy. The exper-
imental results provided in Section 6 (Table 1) demonstrate
that sign constraints consistently improve performances
across different neural networks and across validation and
testing sets of the data.

• The introduction of MM algorithms for the training of sign
constrained rectifier neural networks (Section 5). The con-
vexity/concavity properties of the proposed SCRNs result in
the existence of a convex surrogate function to upperbound
the non-convex hinge loss function so that the efficient MM
algorithm can be used to learn the parameters of the neu-
ral networks. Experimental results (Section 6) demonstrate
that the proposed MM algorithm converges within a few
iterations, while the gradient descent training of a conven-
tional neural network usually takes thousands of iterations.

Related works. This work is related to Ristera and Rubin, (2017)
which exploits piecewise convexity properties of rectifier neural
networks to overcome local minima problems. While Ristera and
Rubin (2017) use the piecewise convexity of general rectifier neu-
ral networks, this work introduces layer-wise convexity/concavity
properties by imposing sign constraints on the weights of the
networks, and exploits these properties for pattern decomposition
and for efficient training usingMM algorithms to reduce the risk of
bad local minima. This work on the universal classification power
is related to Hornik, Stinchcombe, and White (1989), Le Roux
and Bengio (2010) and Montufar and Ay (2011), which address
the universal approximation power of deep neural networks for
functions or for probability distributions, and An, Boussaid, and
Bennamoun (2015) which prove that any multiple pattern sets
can be transformed to be linearly separable by two hidden layers,
with additional distance preserving properties. In this paper, we
prove that any number of pattern sets can be separated by a three-
layer (two hidden and one output) neural network with negative
weights in the output layer and negative weights in the second
hidden layer. The biases and the weights in the first hidden layer
can either be positive or negative. The significance of the proposed
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