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h i g h l i g h t s

• The dilution and symmetry of a recurrent neural network affect its limit behaviors.
• There are two optimal regions that optimize the number of limit behaviors.
• The first region is symmetric and fully connected as predicted by Hebbs’ learning.
• The second region is asymmetric and diluted as found in the neocortex and hippocampus.
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a b s t r a c t

Westudywith numerical simulation the possible limit behaviors of synchronous discrete-time determin-
istic recurrent neural networks composed ofN binary neurons as a function of a network’s level of dilution
and asymmetry. The network dilution measures the fraction of neuron couples that are connected, and
the network asymmetry measures to what extent the underlying connectivity matrix is asymmetric.
For each given neural network, we study the dynamical evolution of all the different initial conditions,
thus characterizing the full dynamical landscape without imposing any learning rule. Because of the
deterministic dynamics, each trajectory converges to an attractor, that can be either a fixed point or
a limit cycle. These attractors form the set of all the possible limit behaviors of the neural network.
For each network we then determine the convergence times, the limit cycles’ length, the number of
attractors, and the sizes of the attractors’ basin. We show that there are two network structures that
maximize the number of possible limit behaviors. The first optimal network structure is fully-connected
and symmetric. On the contrary, the second optimal network structure is highly sparse and asymmetric.
The latter optimal is similar to what observed in different biological neuronal circuits. These observations
lead us to hypothesize that independently from any given learning model, an efficient and effective
biologic network that stores a number of limit behaviors close to its maximum capacity tends to develop
a connectivity structure similar to one of the optimal networks we found.

© 2018 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Recurrent neural networks are able to store stimuli-response
associations, and serve as a model of how live neural networks
store and recall behaviors as responses to given stimuli. A discrete-
time deterministic recurrent N binary-neuron neural network is
completely characterized by its N2 edges, and its instantaneous
state is defined by a neuron activation vector σ, which is a binary
vector of size N . In this paper, we consider a specific kind of
recurrent neural network, which is initialized, analogously to a
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Hopfield network, by assigning to the network’s neurons an initial
pattern which is the network stimulus or input. The collection of
all possible neuron activation vectors contains 2N allowed vectors
σ, these vectors can be partitioned in three categories: steady
states, limit cycles, and transient states. Steady states are neuron
activation states that do not change in time, and limit cycles are
sequences of neuron activation vectors that repeat cyclically, with
a period that we call cycle length. From now on, we will consider
a steady state as a limit cycle of length 1. A network, given any
initial activation vector, always evolves to a limit cycle, which
for this reason we also refer to as attractor. In other words, a
network associates a limit cycle to any initial neural activation
state that is given as an input. For this reason, limit cycles can be
considered as behaviors stored as responses to initial stimuli. In
the case of length 1 cycles, limit behaviors are a single activation
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state which in the case of Hopfield networks correspond to the
recollection of amemory. In the case of cycleswith a length greater
than 1, stored limit behaviors are sequences of activation patterns
whichmay correspond to a stored dynamical sequence, such as the
performance of a complex motor task, or a dynamic sequence of
static memories. In principle, a recurrent neural network stores a
certain number of limit behaviors as vectors from a 2N set in a data
structure defined by N2 parameters. Furthermore, these vectors
can be recovered in responses to input stimuli. This clearly has
intriguing analogies with content-addressable memory systems
capable of indexing large strings of bits (Carpenter, 1989; Hopfield,
1987).

In the past, recurrent neural network, and specifically Hopfield
neural networks have been used to model memory storage and
recall, though more recently neurobiology models implemented
recurrent neural networks to describe brain activity in different
cognitive tasks. Mante, Sussillo, Shenoy, and Newsome (2013)
use recurrent neural networks to model the integration of con-
text information in the prefrontal cortex in discrimination tasks.
Similarly, Carnevale, deLafuente, Romo, Barak, and Parga (2015)
model with recursive neural networks the premotor cortex mod-
ulation of its response criteria in a detection task with temporal
uncertainty. Furthermore recurrent neural networks are used to
model phoneme acquisition (Kanda, Ogata, Takahashi, Komatani,
& Okuno, 2009), and language acquisition (Heinrich & Wermter,
2018). Neuroscience proposes two fundamental conceptual frame-
works that enable recurrent neural networks to store limit
behaviors: the connectionist hypotheses and the innate hypothe-
ses. Hebb (1949) proposed the connectionist hypothesis, which
assumes that a neural network starts blank and forms new links
or adjusts the existing ones each time it stores a new limit behav-
iors. In this framework limit behaviors are stable equilibria in the
neural network dynamics. A criticism of Hebbs’ networks is that as
new limit behaviors are added the corresponding generated stable
states start interfering with the stable states associated with older
limit behaviors. This limits themaximumstorage capacity C , which
is defined as the maximum number of limit behaviors that can be
stored. Notice that this definition is different from the usual defi-
nition used in associative memory networks, in which the storage
capacity is defined as the number of uniformly distributed random
vectors that can be stored in an associative memory (Hassoun,
1993; Hassoun &Watta, 1997). Amit, Gutfreund, and Sompolinsky
(1985a) show that a Hebbian network has a storage capacity of
C = pN with p ≈ 0.14. In contrast, innate networkmodels assume
that limit behaviors are stored using innate neural assemblies with
a given connectivity. Among other innate memory models, Perin,
Berger, and Markram (2011) propose that groups of pyramidal
neurons in the rats’ neocortex may be innate neuron assemblies
that may only partially change their overall connectivity structure.
Indeed, Perin et al. (2011) find that these assemblies have similar
connectivity proprieties among different animals, and argue that
these assemblies serve as building blocks for the formation of
composite complex memories.

Whether we assume a connectionist or an innate network
scheme as our working framework, we implicitly assume that a
recurrent neural network acts as a content-addressing memory
which given an input pattern (stimulus) returns a limit behavior.
This limit behavior can be a recovered memory or a more complex
neural sequence of neural activations that may be integrated into
a second neural network. To understand how well a recurrent
neural network acts as a content-addressingmemory, thememory
storage and retrieval literature uses discrete-time recurrent neural
networkswithMcCulloch–Pitts neurons (McCulloch & Pitts, 1943).
Each discrete-time recurrent neural network, which in this litera-
ture is sometimes referred to asHopfield neural network, is charac-
terized by its connectivitymatrix J, which schematically represents

the set of synapses and electrical junctions connecting couples of
neurons. Deterministic discrete-time synchronous recursive neu-
ral networks are deterministic discrete dynamical systems. This
implies three properties. First, each state in the neural network
uniquely transits to another one. Second, the reverse is not true,
different states can evolve to the same state. Third, each state
belongs to a path that connects it to a stable activity pattern, i.e. a
limit cycle. Given any initial neural state, or input, a discrete-time
recurrent neural network dynamically falls into an attractor. In
this framework, the attractor is the retrieved limit behavior (Amit,
Gutfreund, & Sompolinsky, 1985b; Bastolla & Parisi, 1998; Folli,
Leonetti, & Ruocco, 2017; Gutfreund, Reger, & Young, 1988; Hebb,
1949; McEliece, Posner, Rodemich, & Venkatesh, 1987; Sompolin-
sky, Crisanti, & Sommers, 1988; Wainrib & Touboul, 2013). Finally,
it is important to consider that a recurrent network associates
a limit behavior to each input from the set of all possible N-bit
inputs, since the number of limit behaviors C is such that C ≪ 2N ,
it performs a many-to-few mapping. Recurrent neural network,
and in particular the Hopfield model (Hopfield, 1987), show how
information can be stored via attractor states. Indeed, there is
some experimental support for discrete attractors in the rodents
hippocampus cells’ activity (Pfeiffer & Foster, 2015), and inmonkey
cells’ activity during tasks (Fuster & Alexander, 1971; Miyashita,
1988).

To understand how well and how many limit behaviors a fully
developed neural network can store, we explore how the structure
properties of an arbitrary connectivity matrix J influences the at-
tractor states of the network without imposing an a priori learning
rules. Given a connectivity matrix J, to characterize the network
structure, we define the network’s asymmetry degree ϵ, and dilu-
tion degree ρ. The most understood properties on fixed discrete-
time recurrent neural networks regard fully-connected Hopfield
neural networks. Fully-connected recurrent Hopfield neural net-
works are networks with dilution degree ρ = 0, in which any
couple of neurons is connected by two axons one in each direction.
In contrast, we define diluted recurrent Hopfield neural networks
as networks with ρ > 0, in which only a subset of all neurons cou-
ples are connected. The existing recurrent Hopfield neural network
literature mostly discusses symmetric neural networks in which
the weights of the two axons connecting neurons i and j in both
directions are the same, and in only few cases researchers inves-
tigate asymmetric neural networks ϵ > 0, in which the weights
are no longer equal. Furthermore, most of the recurrent Hopfield
neural network literature which studies the effect of asymmetry
assumes binary neurons with activations state that can take values
−1 and +1. Under these constraints, it is reported that symmetric
fully-connected networks, ϵ = 0, have several attractors, all of
which are formed by cycles of length 1 and 2. As the network
becomes less symmetric, ϵ > 0, the attractors are composed of
longer neural activation patterns. Increasing asymmetry in a fully
connected neural network introduces severe drawbacks. Indeed,
when the degree of asymmetry is increased above a certain thresh-
old a neural network is subject to a transition from an ordered
phase to a ‘‘chaotic’’ regime (Bastolla & Parisi, 1998; Gutfreund et
al., 1988). In the chaotic regime, almost identical initial patterns
can reach different attractors, and the network is characterized
by a high sensitivity to initial conditions. Moreover, this chaotic
regime causes exponentially longer recognition time, where the
recognition time is the average number of discrete transitions
required to reach the corresponding attractor from a generic point
in its basin of attraction. Toyoizumi and Huang (2015) analyze
asymmetric matrices ϵ = 0with neuron activation profile {−1, 1},
and show that under these conditions as the limit cycle length
scales exponentially with N , the number of attractor scales lin-
early with N . It is important to point out that Bastolla and Parisi
(1998), Gutfreund et al. (1988) and Toyoizumi and Huang (2015)
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