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a b s t r a c t

In this article, generalized pinning synchronization problem is investigated for a class of Cohen–Grossberg
neural networks with discontinuous neuron activations and mixed delays. By designing generalized
pinning state-feedback and adaptive controllers, several criteria for global exponential synchronization
and global asymptotical synchronization of the drive–response based system are obtained in view of non-
smooth analysis theory with generalized Lyapunov functional method, in which first pinning the neurons
with very small self-inhibition and small amplification functions is pointed out. Somenumerical examples
are given to illustrate the feasibility of the obtained results.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

As far as we know, the non-Lipschitz or discontinuous neuron
activations widely exist in many practical neural networks. They
are caused by some interesting engineering tasks, such as dry fric-
tion, impacting machines, power circuits, switching in electronic
circuits (Chen, Wang, & Liu, 2000; Chong, Hui, & Zak, 1999; Tsang,
Wang, & Yeung, 2000). Furthermore, McCulloch and Pitts pointed
out that neural events and the relations among them can be treated
by means of the two-valued logic of propositions due to the ‘‘all-
or-none’’ character of nervous activity (McCulloch & Pitts, 1943).
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In general, a neural network with non-Lipschitz or discontinuous
neuron activations is believed as an ideal model for neuron ampli-
fiers with very high gains (Forti & Nistri, 2003). As a matter of fact,
the sigmoidal neuron activations of the classical Hopfield network
with high-gain amplifiers would approach a discontinuous hard-
comparator function (Yang, Cao, & Ho, 2015). Hopfield and Tank
also pointed out that the high-gain hypothesis is crucial to make
negligible the contribution to neural network energy function of
the term depending on neuron self-inhibitions, and to favor binary
output formation (Hopfield & Tank, 1985). When dealing with
neural networks possessing high-slope nonlinear activations, it is
often advantageous to model them with a system of differential
equations with discontinuous neuron activations, rather thanwith
continuous ones whose slope is high but of finite value (Forti &
Nistri, 2003; Yang et al., 2015). Thereupon, many important and
interesting dynamical behaviors of neural networks with discon-
tinuous neuron activations have been proposed and developed
such as stability, periodicity and multi-periodicity (Forti, Grazzini,
& Nistri, 2006; Forti, Nistri, & Papini, 2005; Liu, Liu, & Xie, 2012; Lu
& Chen, 2005; Wang & Huang, 2014a, b, 2016; Wang & Luo, 2015;
Wu, 2012).

Recently, the problem of synchronization control for neural
networks has been one of hot research issues since the pioneering
work of Pecora and Carroll (1990). It has received great atten-
tion due to its potential applications, such as secure communi-
cation, biological systems and information science (Kocarev, 2013;
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Lu, Liu, & Chen, 2016; Tang, Lu, & Chen, 2012; Tang, Lu, Lü, & Yu,
2012; Wu & Yang, 2016; Zhang, Wu, Lu, Feng, & Lü, 2014). When
the discontinuous neuron activations are incorporated into neural
networks, some interesting collective dynamical behaviors, such
as quasi-synchronization, finite-time synchronization and global
exponential synchronization can appear (Cai, Huang, & Zhang,
2015; Duan, Huang, & Fang, 2017; Liu, Cao, Yu, & Song, 2016; Liu,
Chen, Cao, & Lu, 2011; Liu, Ho, Cao, & Xu, 2017; Wang, Huang,
& Tang, 2015, 2018; Wu & Yang, 2016; Yang & Cao, 2013a, b).
In Liu & Cao (2010), the complete synchronization was consid-
ered for a class of neural networks with discontinuous neuron
activations via approximation approach. Using the state feedback
control, Liu et al. (2012) studied the quasi-synchronization for
a class of delayed neural networks with discontinuous neuron
activations and parameter mismatches. By constructing suitable
Lyapunov functional, Yang and Cao (2013a) investigated the expo-
nential synchronization for a class of delayed neural networkswith
discontinuous neuron activations via state-feedback controllers
and adaptive controllers, respectively. By designing discontinuous
state-feedback controllers, Cai et al. (2015) studied two kinds of
global exponential synchronization of the drive–response-based
discontinuous neural networks. By designing continuous and dis-
continuous state feedback controllers, Wang et al. (2015) studied
the complete synchronization for a class of neural networks with
discontinuous neuron activations, inwhich the discontinuous neu-
ron activations do not satisfy the Lipschitz-like condition. Wang
et al. (2018) studied the global exponential synchronization for
a class of neural networks with discontinuous neuron activations
via delay-dependent, delay-independent and adaptive discontinu-
ous controllers, respectively, in which the derivative of the time-
varying delay can be considerably large, even the time-varying
delay can be non-differentiable. So far, all those works on the issue
of synchronization control have to add controllers to each neuron
of the discontinuous neural networks. Generally, it is too costly and
impractical to add controllers to all neuron in large-scale neural
networks with discontinuous neuron activations.

Pinning control strategy, it means that one only needs to place
the feedback injections on a small fraction of network nodes. As an
effective and powerful method, pinning control strategy has been
proposed in the study of synchronization for complex networks
(Wang & Chen, 2002; Yu, Chen, Lü, & Kurths, 2013; Zhou, Lu, &
Lü, 2008). So far, the problem of synchronization control for neu-
ral networks via pinning control strategy has received increasing
attention (Song, Cao, & Liu, 2012; Wen, Yu, Hu, Cao, & Yu, 2015;
Zhou, Lu, et al., 2008; Zhou, Wu, et al., 2008). However, many
previous works on pinning control strategy focused mainly on the
neural networks with continuous neuron activations, and their
tools or methods are generally invalid for discontinuous cases due
to the essential difference between continuous and discontinuous
functions. Obviously, the research on synchronization of neural
networks with discontinuous neuron activations via pinning con-
trol strategy is more difficult but more practical. In this case,
we develop the generalized synchronization pinning scheme for
neural networks with discontinuous neuron activations, and try to
answer two basic problems:which neurons should be pinned first?
and how large should the control strength be selected formore less
control gains? This is the main contribution in this text.

On the other hand, Cohen–Grossberg neural network, an im-
portant recurrent neural networks model first described by Co-
hen and Grossberg (1981), has aroused a tremendous surge of
investigation from various fields, such as parallel computation,
signal and image processing, nonlinear optimization and pattern
recognition. Recently, there are many works on delayed Cohen–
Grossberg neural networks with discontinuous neuron activations
(Lu & Chen, 2005; Wang & Huang, 2014a, b, 2016; Wang, Huang,
& Cai, 2013; Wu, Zhang, & Li, 2015). Among these works, Wu

et al. studied the exponential synchronization for a class of delayed
Cohen–Grossberg neural networks with discontinuous activations
under the assumption of discontinuous neuron activations being
bounded andmonotone non-decreasing. Butwhen dealingwith an
unbounded dependent variable, one could choose an unbounded
nonlinear activation function. As pointed out by Gonzalez (2000),
a nonlinear activation function should be used for truly exploit-
ing the potential of neural networks. Based on this point, using
the unbounded and monotone discontinuous neuron activations
is very interesting. For Cohen–Grossberg neural networks with
unbounded discontinuous neuron activations, themain problem in
synchronization investigations is how to handle the amplification
function. Inspired by the idea of Chen and Rong (2004) and Lu and
Chen (2003), we introduce the equivalent transformation method
to dealwith the amplification function, this is another contribution
of this paper.

The rest of this paper is outlined as follows. Model description
and somepreliminaries concerning Filippov Solution are presented
in Section 2. In Section 3, the equivalent transformation method
is presented at first. After that, the generalized pinning control
schemes with state-feedback controllers and adaptive controllers
are designed. Based on functional differential inclusions theory and
non-smooth analysis theory with generalized Lyapunov functions
method, several criteria on global exponential synchronization and
global asymptotical synchronization of the drive–response-based
systems are derived. It is noteworthy that these controllers and
non-smooth Lyapunov functions in this paper are essentially new
and different from those in the earlier literatures (Cai et al., 2015;
Duan et al., 2017; Liu et al., 2011; Wang et al., 2015, 2018; Wu &
Yang, 2016; Wu et al., 2015; Yang & Cao, 2013a, b). In Section 4,
numerical simulations further illustrate the effectiveness of our
results. Section 5 presents a brief conclusion.

2. Neural networks and preliminaries

In this paper, we consider the following Cohen–Grossberg neu-
ral networks with discontinuous activations and mixed time de-
lays:

dxi(t)
dt

= αi(xi(t))
[
−di(t)xi(t) +

n∑
j=1

aij(t)fj(xj(t))

+

n∑
j=1

bij(t)fj(xj(t − τ (t)))

+

n∑
j=1

cij(t)
∫

+∞

0
fj(xj(t − s))k(s)ds + Ii(t)

]
,

i = 1, 2, . . . , n, (2.1)

where x = (x1, x2, . . . , xn)T, xi is the state variable of the ith
unit; α(·) = diag(α1(·), α2(·), . . . , αn(·)), αi(·) > 0 is the am-
plification function; D(t) = diag(d1(t), d2(t), . . . , dn(t)), di(t) is
the self-inhibition of the ith neuron; A(t) = (aij(t))n×n, aij(t)
is the connection strength of the jth neuron on the ith neu-
ron; B(t) = (bij(t))n×n, C(t) = (cij(t))n×n, bij(t) and cij(t)
are the delayed feedbacks of the jth neuron on the ith neu-
ron, with time-varying delays and distributed delays, respec-
tively; f (x(t)) = (f1(x1(t)), f2(x2(t)), . . . , fn(xn(t)))T, fi(xi(t)) is
the neuron input–output activation of the ith neuron; I(t) =

(I1(t), I2(t), . . . , In(t))T, Ii(t) is the external input to the ith neuron.
Throughout this paper, we always assume that all the coeffi-

cients di(t), aij(t), bij(t), cij(t), Ii(t) are bounded continuous func-
tions; the amplification function αi(·) is bounded differentiable
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