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a b s t r a c t

This paper focuses on stochastic exponential synchronization of delayed memristive neural networks
(MNNs) by the aid of systems with interval parameters which are established by using the concept of
Filippov solution. New intermittent controller and adaptive controller with logarithmic quantization are
structured to deal with the difficulties induced by time-varying delays, interval parameters as well as
stochastic perturbations, simultaneously.Moreover, not only control cost can be reduced but also commu-
nication channels and bandwidth are saved by using these controllers. Based on novel Lyapunov functions
and new analytical methods, several synchronization criteria are established to realize the exponential
synchronization of MNNs with stochastic perturbations via intermittent control and adaptive control
with or without logarithmic quantization. Finally, numerical simulations are offered to substantiate our
theoretical results.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The fundamental circuit elements, capacitor, resistor, and in-
ductor are well known. They can be used to represent the re-
lationships between essential electrical quantities which include
current, voltage, flux and charge. Concretely, the capacitor de-
scribes a relationship between charge and voltage, resistor rep-
resents a relationship between current and voltage, and inductor
stands for a relation between flux and current, respectively. It
should be noted that the relation of flux and charge is not known
until 1971. In this year, Chua (1971) predicted that there should
be the fourth fundamental element, which is named memristor.
Memristor represents a relationship between flux and charge,
which cannot be replaced by any mixture of capacitors, resistors
and inductors. In 2008, Chua’s predictability was confirmed by
the Hewlett–Packard research team (Strukov, Snider, Stewart, &
Williams, 2008). This research team built a practicalmemristor de-
vice. After that, memristors receive more and more attention (An-
buvithya, Mathiyalagan, Sakthivel, & Prakash, 2016; Wang, Shen,
Yin, & Zhang, 2015; Yang, Guo, & Wang, 2015).

Recently, dynamical behaviors of MNNs have garnered wide-
scale attention since this class of neural networks (NNs) can be
applied to emulate the human brain (Itoh & Chua, 2009; Thomas,
2013). Especially, synchronization of MNNs has been extensively
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investigated thanks to their potential applications in secure com-
munications, image encryption, information science and biological
systems (Mathiyalagan, Anbuvithya, Sakthivel, Park, & Prakash,
2016; Nana, Woafo, & Domngang, 2009; Sakthivel, Anbuvithya,
Mathiyalagan, Ma, & Prakash, 2016; Wen, Huang, Zeng, Chen, &
Li, 2015), and so on. Particularly, exponential synchronization of
MNNs has become a hot research topic, and fruitful results have
been achieved (Bao, Park, & Cao, 2015; Wang & Shen, 2014; Wen,
Bao, Zeng, Chen, & Huang, 2013; Yang, Cao, & Yu, 2014; Zhang,
Li, Huang, & He, 2015). For example, exponential synchronization
of delayed memristive Cohen–Grossberg NNs was considered by
structuring nonlinear transformation in Yang et al. (2014). Ex-
ponential synchronization of coupled memristive recurrent NNs
was investigated in Zhang et al. (2015), where impulses with and
without delay were considered for modeling the coupled NNs
simultaneously. On the other hand, researchers have proposed
various control methods to realize synchronization of MNNs and
other chaotic systems, such as state feedback control (Wang &
Shen, 2015; Yang & Ho, 2016), impulsive control (Li, Feng, &
Huang, 2008; Li & Song, 2017), intermittent control (Huang, Li,
Yu, & Chen, 2009; Zhang & Shen, 2015), pinning control (Wang,
Wu, Huang, Ren, & Wu, 2016), and adaptive control (Song & Sun,
2017; Yang, Cao, & Liang, 2017). Note that intermittent control and
adaptive control are efficient and economical in reducing the con-
trol cost among the above-mentioned types of control technique.
Therefore, intermittent control and adaptive control have aroused
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widespread interests of researchers andwitnessed effectiveness in
synchronizing MNNs, respectively.

Note that NNs are always in an external noisy environment
and therefore their behaviors maybe disturbed by uncertain per-
turbations. Stochastic dynamical systems are often used to de-
scribe the state of systems which are subjected to a changing
environment. In fact, stochastic systems have attracted increasing
attention due to their extensive application in economic systems,
network control systems and modeling production systems (Bao,
Park, & Cao, 2016; Huang, Li, Duan, & Starzyk, 2012; Li, Fang, &
Li, 2017; Li, Yu, & Huang, 2014; Tang, Gao, & Kurths, 2014; Wu &
Yang, 2016; Yang & Cao, 2009; Yang, Zhu, &Huang, 2011; Zhang, Li,
Huang, & Huang, 2018). Particularly, asymptotic synchronization
of complex-variable chaotic systems was considered in Wu and
Yang (2016), where node systems presented nonidentical nonlin-
ear dynamic behaviors and subjected to stochastic perturbations.
In Li et al. (2017), the authors investigated exponential stabiliza-
tion of delayed MNNs with stochastic disturbance via intermittent
adaptive control. The authors focused on fixed-time synchroniza-
tion of complex networks with nonidentical nodes and stochastic
noise perturbations in Zhang et al. (2018). The limit speed of
switching of amplifiers, memory effects, finite transmission veloc-
ity, etc. lead to inevitable presences of time delays in various fields
such as engineering, physics, and biology. Hence, many results
considered dynamical systems with time delays such as Bao et al.
(2015, 2016), Huang, Chan, Huang, and Cao (2007) Huang et al.
(2012, 2009), Li and Song (2017), Song and Sun (2017), Wang and
Shen (2014, 2015), Wen et al. (2013), Yang and Cao (2009), Yang et
al. (2017, 2014), Yang and Ho (2016), Yang et al. (2011), Zhang et
al. (2015), and Zhang and Shen (2015).

On the other hand, the transmission of signals is usually limited
by capacity and bandwidth of communication channels in practice.
To improve the efficiency of communication, an effective method
is quantizing the control signals before they are transmitted. The
quantization problems have attracted considerable attention in
recent years (Brockett & Liberzon, 2000; Cheng, Chang, Park, Li,
& Wang, 2018; Song, Li, Li, & Lu, 2016; Tian, Yue, & Peng, 2008;
Wan, Cao, &Wen, 2017; Xu et al., 2017). Especially, with the help of
quantized control, stabilization of nonlinear discrete-time systems
was considered in Song et al. (2016). Finite-time synchronization
of coupledNNswas investigated via aperiodically intermittent pin-
ning controllers with logarithmic quantization in Xu et al. (2017).
There is no doubt that quantized control techniques can make full
use of transmission capacity of the network and reduce channel
blocking. Moreover, consider the quantized intermittent control
and quantized adaptive controlwill further reduce the control cost.
Note that there is no paper focus on exponential synchronization
of MNNs via quantized intermittent control or quantized adaptive
control in the open literature. This gap will be filled in the present
paper, which is quite challenging.

Motivated by the above discussions, stochastic exponential syn-
chronization for MNNs with time-varying delays is investigated
in this paper. The main contributions are summarized below:
(1) New analytical methods are adopted to study synchroniza-
tion of MNNs by the aid of systems with interval parameters
which are established by using the concept of Filippov solution;
(2) New quantized intermittent controller and quantized adaptive
controller are designed, which can make full use of transmission
capacity of the network and reduce control cost; (3) By utilizing
Lyapunov functional methods and stochastic analysis techniques,
some exponential synchronization criteria of MNNs are obtained
by applying quantized intermittent control and quantized adaptive
control; (4) As special cases, some exponential synchronization
criteria of MNNs are also derived by using controllers without
logarithmic quantization.

The reminder of this technical correspondence is proposed
as follows. The model of MNNs with stochastic perturbations is

presented in following section. This section also presents some
definitions and necessary assumptions which are important to
derive our main results. In Section 3, exponential synchronization
of the MNNs is studied via quantized intermittent controllers. In
Section 4, exponential synchronization of the MNNs is studied via
quantized adaptive controllers. Then, numerical simulations are
carried out to substantiate the effectiveness of theoretical results
in Section 5. In Section 6, the conclusion is given.

2. Model description and some preliminaries

Notations: The standard notations are used throughout this
paper. R stands for the set of real numbers, Rn denotes the
n-dimensional space, and x = (x1, x2, . . . , xn)T is a vector
of n-dimension. For matrix A = (aij)n×n, |A| = (|aij|)n×n,
diag(l1, l2, . . . , ln) stands for a n × n diagonal matrix, In denotes
the n × n identity matrix, and ∥ · ∥ represents the standard 2-
norm of a vector or a matrix. Moreover, let (Ω,F, {Ft}t≥0,P) be
a complete probability space with filtration {Ft}t≥0 satisfying the
usual conditions (i.e. the filtration contains all P-null sets and is
right continuous). E[·] stands for mathematical expectation oper-
ator. co[E] is the closure of the convex hull of the set E.

Consider a model of delayed MNN which can be described as
follows:

dxi(t) = [−cixi(t) +

n∑
j=1

aij(xi(t))fj(xj(t))

+

n∑
j=1

bij(xi(t))fj(xj(t − τj(t)))]dt, (1)

where i = 1, 2, . . . , n, xi(t) ∈ R denotes the voltage applied on
the capacitor Ci, τi(t) is the time-varying delay; ci > 0 stands
for the rate with which the ith neuron will reset its potential to
the resting state; f (x(t)) = (f1(x1(t)), . . . , fn(xn(t)))T is the neuron
feedback function; aij(xi(t)) and bij(xi(t)) denote the non-delayed
anddelayedmemristive synaptic connectionweights, respectively,
and

aij(xi(t)) =
Waij(xj(t))

Ci
sgnij, bij(xi(t)) =

Wbij(xj(t))
Ci

sgnij,

sgnij =

{
1, i = j,

−1, i ̸= j,

where Waij(xj(t)) and Wbij(xj(t)) denote the memductances of
memristors Maij and Mbij, respectively. Maij represents the mem-
ristor between fj(xj(t)) and xi(t), Mbij represents the memristor
between fj(xj(t − τj(t))) and xi(t).

Based on the feature of memristor and the current–voltage
characteristics, the following mathematical model of the memris-
tance is considered:

aij(xi(t)) =

{
âij, |xi(t)| ≤ Ti,
ǎij, |xi(t)| > Ti,

(2)

bij(xi(t)) =

{
b̂ij, |xi(t)| ≤ Ti,
b̌ij, |xi(t)| > Ti,

(3)

where Ti > 0 is switching jump, âij, ǎij, b̂ij, b̌ij, i, j = 1, 2, . . . , n,
are constants. The initial conditions of (1) are xi(t) = φi(t) ∈

C([−τ , 0],R), i = 1, 2, . . . , n.
The controlled response system is described as follows:

dyi(t) = [−ciyi(t) +

n∑
j=1

aij(yi(t))fj(yj(t))

+

n∑
j=1

bij(yi(t))fj(yj(t − τj(t))) + ri(t)]dt

+ hi(t, zi(t), zi(t − τi(t)))dωi(t), (4)
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