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a b s t r a c t

In this paper, without separating the complex-valued neural networks into two real-valued systems,
the quasi-projective synchronization of fractional-order complex-valued neural networks is investigated.
First, two new fractional-order inequalities are established by using the theory of complex functions,
Laplace transform and Mittag-Leffler functions, which generalize traditional inequalities with the first-
order derivative in the real domain. Additionally, different from hybrid control schemes given in the
previous work concerning the projective synchronization, a simple and linear control strategy is designed
in this paper and several criteria are derived to ensure quasi-projective synchronization of the complex-
valued neural networks with fractional-order based on the established fractional-order inequalities and
the theory of complex functions. Moreover, the error bounds of quasi-projective synchronization are
estimated. Especially, some conditions are also presented for the Mittag-Leffler synchronization of the
addressed neural networks. Finally, some numerical examples with simulations are provided to show the
effectiveness of the derived theoretical results.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

As the promotion and generalization of recurrent neural net-
works in the real domain (Cichocki & Unbehauen, 1993; Ema,
Yokoyama, Nakamoto, & Moriizumi, 1989; Matsuoka, Ohoya, &
Kawamoto, 1995; Nossek, Gerhard, Tamás, & Chua, 2010; Valle &
Castro, 2017; Xing, Jiang, & Hu, 2013), complex-valued recurrent
neural networks are established by substituting complex-valued
state vectors, connection weights, activation functions, external
inputs or outputs for real-valued ones. Currently, complex-valued
recurrent neural networks have been received considerable atten-
tion due to their comprehensive applications in filtering, computer
vision, remote sensing, quantum devices, spatio-temporal analysis
of physiological neural devices and systems (Aizenberg, 2017;
Zhang, Sui, & Li, 2017). Moreover, the complex-valued recurrent
neural networks have much more complicated properties than
the real-valued ones which make them possible to solve some
problems that cannot be solved by real-valued models such as
the detection of symmetry problem and the exclusion OR (XOR)
problem. In view of those, more and more researchers recently
investigated the dynamic behaviors of complex-value recurrent
neural networks and many excellent results were obtained in
Aizenberg (2017), Fang and Sun (2014) and Zhang, Sui et al. (2017).
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As early as 1695s, the concept of fractional operator (Kilbas, Sri-
vastava, & Trujillo, 2006; Monje, Chen, Vinagre, Xue, & Feliu, 2010;
Podlubny, 1999) has been put forward by Leibnitz. For a long time,
the theory of fractional calculus is developed mainly as a purely
theoretical field of mathematics. However, in the wake of devel-
opments in science and technology, many scholars have pointed
out that fractional-order calculus is ideally suitable to describe
the various materials and processes with memory and hereditary
properties (Elfarhani, Jarraya, Abid, & Haddar, 2016), which is not
available in integer-order ones. Based on that, it is imperative that
the fractional calculus is introduced to complex-valued recurrent
neural networks. Lately, more and more researchers discussed
fractional-order complex-valued recurrent neural networks and
some valuable results were reported on bifurcations (Huang, Cao,
Xiao, Alsaedi, & Hayat, 2017; Kaslik & Rădulescu, 2017; Wang,
Wang, Li, & Huang, 2017), stability analysis (Rakkiyappan, Velmu-
rugan, & Cao, 2015; Tyagi, Abbas, & Hafayed, 2016; Zhang, Song,
& Zhao, 2017), and synchronization (Bao, Park, & Cao, 2016b). It
should be noted that these results are mainly focused on stability
analysis and there are few results on synchronization control of
fractional-order complex-valued neural networks. In addition, the
essential technique used in Bao et al. (2016b), Huang, Cao et al.
(2017), Kaslik and Rădulescu (2017), Rakkiyappan et al. (2015),
Tyagi et al. (2016), Wang, Wang et al. (2017), Wang, Yang et al.
(2017) and Zhang, Song et al. (2017) is that the addressed complex-
variable systemswere first separated into two real-valued systems
according to their real and imaginary parts, and then the criteria on

https://doi.org/10.1016/j.neunet.2018.04.007
0893-6080/© 2018 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.neunet.2018.04.007
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2018.04.007&domain=pdf
mailto:812695591@qq.com
mailto:yujuanseesea@163.com
mailto:wacheng2003@163.com
mailto:jianghai@xju.edu.cn
https://doi.org/10.1016/j.neunet.2018.04.007


S. Yang et al. / Neural Networks 104 (2018) 104–113 105

stability or synchronization were obtained by investigating these
real-valued systems. Although the method is effective, the dimen-
sions of the two real-valued systems are double that of the original
complex-valued neural networks, and this greatly increases the
difficulty of theoretical analysis and the complexity of the derived
results. Hence, to overcome or avoid the problem, a natural idea
is how to directly discuss the synchronization of the complex-
valued neural networks with fractional-order by using the theory
of complex functions rather than separating the original complex-
valued neural networks into two real-valued systems. Evidently,
the problem is valuable and meaningful.

As a typical collective behavior, synchronization has attracted
considerable attention due to its theoretical importance and prac-
tical applications in various fields such as the cryptography, mod-
eling brain activity, clock synchronization of sensor networks
(Annovazzi-Lodi, Donati, & Scire, 1997; Bao, Park, & Cao, 2016a;
Chen, Lu, & Zheng, 2015; Chien & Liao, 2005). Up to now, many
types of synchronization schemes have been presented such as
complete synchronization (Bao, Park, & Cao, 2015; Gu, Yu, &Wang,
2017), anti-synchronization (Huang & Cao, 2017), phase synchro-
nization (Zhang, Wang, & Lin, 2017), and projective synchroniza-
tion (Song, Song, & Balsera, 2017; Wang, Yang, Hu, & Xu, 2015; Yu,
Hu, & Jiang, 2015; Yu, Hu, Jiang, & Fan, 2014; Zhang, Yang, &Wang,
2017; Zheng et al., 2017). Among a great variety of synchronization
schemes, projective synchronization, characterized by a scaling
factor that the drive system and response system could be syn-
chronized proportionally, is one of the most interesting problems.
Particularly, it can be used to extend binary digital to M-nary
digital communication for achieving fast communication. Nowa-
days, projective synchronization has been extended to fractional-
order neural networks (Song et al., 2017; Wang et al., 2015; Yu et
al., 2015, 2014; Zhang, Yang et al., 2017; Zheng et al., 2017), in
which some complex and hybrid controllers including open loop
control and switching control were, respectively, designed to in-
vestigate the projective synchronization of fractional-order neural
networks. Evidently, such complex controllers are inconvenient
and undesirable in applications. In addition, their proposedmodels
are real-valued neural networks, and the projective synchroniza-
tion of complex-valued neural networks with fractional-order has
not been considered to the best of our knowledge. Moreover, as
pointed out in Huang, Fan, Jia, Wang, and Li (2017) and Yang, Li,
Huang, Song, and Chen (2017), in practical synchronization imple-
mentations, the synchronization error could not always approach
zero with time, but fluctuates within a small bound, that is so-
called quasi-synchronization.

Motivated by the above discussions, in this paper, we focus our
attention on the quasi-projective synchronization of fractional-
order complex-valued recurrent neural networks. The main con-
tribution of this paper lies in the following aspects:

(1) At first, two new inequalities are established under the
fractional calculus. The first inequality is related to the Caputo
fractional derivative of (f (t)− h)(f (t) − h), which extends the cor-
responding result within the real domain given in Yu et al. (2015),
where f (t), h ∈ C. The second one is an important generalization
of the traditional inequality with first-order derivative introduced
in Liao (2000) and improves the result given in Wu and Zeng
(2017), which plays an essential role in the investigation of quasi-
synchronization of fractional-order neural networks.

(2) Second, different from some complex and hybrid controllers
given in Song et al. (2017), Wang et al. (2015), Yu et al. (2014),
Yu et al. (2015), Zhang, Yang et al. (2017) and Zheng et al. (2017),
a linear feedback control scheme is designed to discuss quasi-
projective synchronization of complex-valued recurrent neural
networks with fractional-order.

(3) Unlike totally the traditional technique in Bao et al. (2016b),
Kaslik and Rădulescu (2017), Rakkiyappan et al. (2015), Tyagi

et al. (2016), Wang, Yang et al. (2017) and Zhang, Song et al.
(2017) and without separating the original complex-valued neural
networks into two real-valued systems, several conditions are
obtained to ensure quasi-projective synchronization of a class of
complex-valued neural networks with fractional-order based on
the theory of complex functions. Moreover, the error bound
of quasi-projective synchronization is estimated. Especially, the
Mittag-Leffler synchronization is also investigated for the ad-
dressedneural networks. It is noted that thewhole analysis process
in this paper is proposed in the complex-valued domain.

The remainder of this paper is organized as follows. In Section 2,
some lemmas, definitions andmodel description are introduced. In
Section 3, a linear control scheme is designed and several sufficient
conditions for quasi-projective synchronization are obtained. In
Section 4, some numerical examples are given to illustrate the
feasibility of the proposed method. Finally, some conclusions are
drawn in Section 5.

2. Preliminaries and model description

In this section, some useful definitions and lemmas are
introduced to investigate quasi-projective synchronization of
fractional-order complex-valued recurrent neural networks.

Notations: Let Cn be a space composed of all n-dimensional
complex vectors and x̄ be the conjugate of x ∈ C. [Re(x)] stands
for the integer part of Re(x) and Re(x) is the real part of x. For a
complex number x = s + ir , i =

√
−1 is the imaginary unit, s and

r are the real and imaginary parts of x, respectively. In addition,
for any xj ∈ C, |xj| =

√
xjxj represents the norm of xj. For any

x = (x1, x2, . . . , xn)T ∈ Cn, ∥x∥2 = (
∑n

j=1|xj|
2)

1
2 represents the

norm of x. Cn([t0, +∞),C) is a set composed of all continuous and
n-order differentiable functions from [t0, +∞) into C.

2.1. Preliminaries

In this paper, Caputo derivative is chosen to deal with
fractional-order complex-valued recurrent neural networks.

Definition 1 (Kilbas et al., 2006; Monje et al., 2010; Podlubny, 1999
Reimann–Liouville Fractional-order Integral). LetΩ ∈ [t0, ∞) (t0 ≥

0) be an interval on the real axis R. Then the Reimann–Liouville
fractional-order integral of order α > 0 for an integrable function
f (x) : [t0, +∞) → C is defined by

t0 I
α
t f (t) =

1
Γ (α)

∫ t

t0

(t − τ )α−1f (τ )dτ ,

here Γ (α) is the Gamma function which is defined by

Γ (α) =

∫
∞

0
e−t tα−1dt.

Definition 2 (Kilbas et al., 2006; Monje et al., 2010; Podlubny, 1999
Caputo Fractional-order Derivative). The Caputo fractional-order
derivative of order α > 0 for a function f (x) ∈ Cn([t0, +∞),C)
is defined as

C
t0D

α
t f (t) =

1
Γ (n − α)

∫ t

t0

f (n)(τ )
(t − τ )α−n+1 dτ ,

where t ≥ t0, n = [α] + 1 is a positive integer and [α] means the
integer part of α. Particularly, when [α] = 0, that is, 0 < α < 1,

C
t0D

α
t f (t) =

1
Γ (1 − α)

∫ t

t0

f ′(τ )
(t − τ )α

dτ .
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