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a b s t r a c t

The traditional artificial neural network (ANN) inversion of electrical resistivity imaging (ERI) based on
gradient descent algorithm is known to be inept for its low computation efficiency and does not ensure
global convergence. In order to solve above problems, a kernel principal component wavelet neural
network (KPCWNN) trained by an improved shuffled frog leaping algorithm (ISFLA)method is proposed in
this study. An additional kernel principal component (KPC) layer is applied to reduce the dimensionality
of apparent resistivity data and increase the computational efficiency of wavelet neural network (WNN).
Meanwhile, a novel ISFLA algorithm is adopted for improving the learning ability and inversion quality
of WNN. In the proposed ISFLA, a hybrid LC mutation attractor is used to enhance the exploitation ability
and a differential updating rule is used to enhance the exploration ability. Four groups of experiments are
considered to demonstrate the feasibility of the proposed inversion method. The inversion results of the
synthetic and field examples show that the introduced method is superior to other algorithms in terms
of prediction accuracy and computational efficiency, which contribute to better inversion results.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Electrical resistivity imaging (ERI) is one of the most commonly
used geophysical exploration methods. It is widely used in hy-
drogeological, environmental, archeological and geotechnical field,
which calculates and analyses the apparent resistivity from a large
number of resistancemeasurementsmade from electrodes. During
the last several decades, various approaches to the interpretation
of geoelectrical resistivity data have been published, based on
linear or quasi-linear inversion techniques (Lesur, Cuer, & Straub,
1999; Loke & Barker, 1995, 1996; Shima & Sakayama, 1987). How-
ever, the inverse problem is a classical nonlinear and ill-posed
parameter estimation problem. These linear inversion algorithms
are mostly linear approximations of nonlinear problems and criti-
cally depend on the initial parameters chosen for them (El-Qady &
Ushijima, 2001).

In recent years, nonlinear inversion methods have been in-
troduced into resistivity inversion due to the global optimization
ability, such as artificial neural network (ANN) (El-Qady & Ushi-
jima, 2001), particle swarm optimization (PSO) (Shaw & Srivas-
tava, 2007), simulated annealing (SA) (Sharma, 2012), and genetic
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algorithm (GA) (Liu, Li, Nie, Wang, & Zhang, 2012; Schwarzbach,
Börner, & Spitzer, 2005). ANN performs an intelligent nonlinear
mapping between input (‘‘Apparent resistivity’’) and output (‘‘True
resistivity’’) data, allowing the network to acquire information and
learn about the problemwhile it is being solved. A few researchers
have studied the applicability of back propagation neural net-
work (BPNN) to solve geophysical inverse problem for 1D vertical
electrical sounding data (El-Qady & Ushijima, 2001; Maiti, Erram,
Gupta, & Tiwari, 2012). However, even in moderately complex
areas, the 1D approach is not sufficiently accurate. So 2D direct
current investigations and resistivity data inversion using BPNNs
have been launched and significant results have been obtained
(Jiang, Dai, & Dong, 2016a, b; Singh, Tiwari, & Singh, 2010). 3D
resistivity surveys are widely used in areas with complex geology,
and the BPNN interpretation models have used in 3D ERI inversion
and given the most accurate inversion results as all geological
structures are 3D in nature (Ho, 2009; Neyamadpour, Abdullah,
& Taib, 2010; Neyamadpour, Abdullah, Taib, & Niamadpour, 2010).
Although BPNN makes the interpretation more general and accu-
rate than linear inversion approaches, it also has some limitations:
slow convergence, low accuracy and over-fitting phenomenon in
training, etc. Al-Abri and Hilal (2008). Nonlinear and complex
direct current resistivity data require more efficient ANN models
and more intensive optimization procedures for better results and
interpretations.
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Fig. 1. The arrangement of electrodes for Wenner–Schlumberger configuration and the sequence of measurements collected. C1 and C2 are two current electrodes, P1
and P2 are two potential electrodes, n is the number of measurement level, the laptop microcomputer is used to automatically select the relevant four electrodes for each
measurement, and the resistivity meter is used to calculate the ground resistivity.

Wavelet neural network (WNN), which has strict theory
base and high nonlinear mapping capability, is a combination
of wavelet theory and neural networks. Nguyen et al. (2012)
developed a WNN algorithm for electroencephalogram artifact.
Kasiviswanathan, He, Sudheer, and Tay (2016) presented and
compared WNN and ANN for streamflow forecast, both of which
were combined with the ensemble method using block bootstrap
sampling, in terms of the forecast accuracy and precision at var-
ious lead-times on the Bow River, Alberta, Canada. Duan, Liu,
Jiao, Zhao, and Zhang (2017) proposed a SAR image segmenta-
tion method based on convolutional-wavelet neural networks and
MarkovRandomField. Comparedwith traditional neural networks,
WNN shows better prediction accuracy, convergence rate and fault
tolerance to the complex nonlinear, uncertain and unknown sys-
tem (Zhang, 1994).

In ERI inversion, the apparent resistivity data are always high
dimensional samples, so the construction of a wavelet basis in the
hidden layer is computationally expensive. Principal component
analysis (PCA) is a useful dimensional compression technology
whose feature is based on the minimum mean square error. Re-
cently, some hybrid architectureswhich incorporated PCA into the
framework of neural network have been studied. Gross and Lutter-
mann (1993) first proposed a hybrid architecture combining PCA
with a multilayer perception for face recognition; Ghosh-Dastidar,
Adeli, and Dadmehr (2008) used PCA technology to enhance radial
basis function neural network for robust epilepsy and seizure
detection. Ravi and Pramodh (2008) applied principal component
neural network to bankruptcy prediction. Reddy and Ravi (2013)
proposed a differential evolution trained kernel principal compo-
nent WNN and differential evolution (DE) trained kernel binary
quantile regression for bankruptcy classification. However, in spite
of the architecture simplicity and guaranteed convergence, the PCA
neural networks have not been investigated for ERI inversion.

In this study, we investigate a kernel principal component
wavelet neural network trained by an improved shuffled frog
leaping algorithm (denoted ISFLA-KPCWNN) in 2.5D ERI inversion.
Firstly, an additional KPCA layer is applied to extract the features
of high dimensional apparent resistivity samples. Secondly, the
shuffled frog leaping algorithm is used to improve the learning
procedure of WNN. Thirdly, a hybrid LC mutation attractor is used
to enhance the local search process of SFLA and a differential
updating rule is applied to enhance the diversification and the
global search ability of SFLA. Finally, a synthetic example and a
field example are used to verify the feasibility and effectiveness of
the proposed inversion method. The inversion performance of the
proposedmethod is comparedwith several different kinds of SFLAs
and WNNs, and it has been found to be better in computational
efficiency, convergence stability and inversion accuracy.

The remainder of the paper is organized as follows. Section 2
introduces the electrical resistivity imaging technology. Section 3

reviews the theories of WNN and SFLA. Section 4 proposes the
ISFLA-KPCWNN algorithm for ERI inversion. Section 5 presents the
experimental evaluations and result discussions. Section 6 gives
some concluding remarks and suggestions for the future work.

2. Electrical resistivity imaging technology

2.1. Wenner–Schlumberger configuration

Electrical resistivity technique involves measurements of elec-
trical resistance of subsurface structure. For a measurement, a
direct current is injected into the ground between two current
electrodes and a voltage is measured through other two potential
electrodes. The ratio of the voltage to the current is referred to as
the electrical resistance of the ground. Such surveys are usually car-
ried out using a large number of electrodes connected to a multi-
core cable. As an example, Fig. 1 shows a possible sequence of
measurements for the Wenner–Schlumberger configuration with
20 electrodes. The basic spacing between adjacent electrodes is ‘‘a’’.
The first step is to make all the possible measurements with elec-
trode spacing of ‘‘1a’’. After completing the sequence of measure-
mentswith ‘‘1a’’ spacing, the next sequence ofmeasurementswith
‘‘2a’’ electrode spacing between current and potential electrodes is
made. The same process is repeated for measurements with ‘‘3a’’,
‘‘4a’’, ‘‘5a’’ and other spacing. All the possible measurements are
made finally.

2.2. 2.5D forward problem

The apparent resistivity values for Wenner–Schlumberger con-
figuration with 42 electrodes are calculated using forward mod-
eling method. In each synthetic profile, 18 layers and 396 datum
points can be gathered. The finite volume approach with cell cen-
tered and variable grid is applied (Pidlisecky & Knight, 2008). The
forward problem can be described as follows:

The 3D potential field due to a known input current is related to
the conductivity structure. It is governed by the Poisson equation:

− ∇ · σ (x, y, z) ∇φ (x, y, z) = Iδ (x − xs) δ (y − ys) δ (z − zs) (1)

where φ is the electric potential field; I is the current source
strength from a dipole; σ is the electrical conductivity structure;
δ (x − xs) δ (y − ys) δ (z − zs) are the Dirac delta functions, which
are non-zero only at the locations of the current sources and sinks.

In 2.5D geological situations, the subsurface conductivity struc-
ture is invariant in one dimension, we assume

(
∂
∂y

)
σ (x, y, z) = 0,

then Eq. (1) can be rewritten as follows:

− ∇ · σ (x, z) ∇φ (x, y, z) = Iδ (x − xs) δ (z − zs) . (2)
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