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a b s t r a c t

Explaining causal reasoning in the form of directed acyclic graphs (DAGs) yields nodal structures with
multivariate relationships. In real-world phenomena, these effects can be seen as multiple feature
dependency with unmeasured external influences or noises. The bivariate models for causal discovery
simply miss to find the multiple feature dependency criteria in the causal models. Here, we propose
a multivariate additive noise model (MANM) to solve these issues while analyzing and presenting a
multi-nodal causal structure. We introduce new criteria of causal independence for qualitative analysis
of causal models and causal influence factor (CIF) for the successful discovery of causal directions in the
multivariate system. The scores of CIF provide the information for the goodness of casual inference. The
identifiability of the proposedmodel to discover linear, non-linear causal relations is verified in simulated,
real-world datasets and the ability to construct the complete causal model. In comparison test, MANM
has out performed Independent Component Analysis based Linear Non-Gaussian Acyclic Model (ICA-
LiNGAM), Greedy DAG Search (GDS) and Regression with Sub-sequent Independent Test (RESIT), and
performed better for Gaussian and non-Gaussian mixture models with both correlated and uncorrelated
feature relations. In performance test, different model fitting errors which occur during causal model
construction are discussed and the performance of MANM in comparison to ICA-LiNGAM, GDS and RESIT
is provided. Results show that MANM has better causal model construction ability, producing few extra
sets of direction with no missing or wrong directions and can estimate every possible causal direction in
complex feature sets.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The dependency in different factors raises the causal reason-
ing in real-world processes. The simplest structures defined by
DirectedAcyclic Graphs (DAGs) are primarily analyzed using Struc-
tural EquationModels (SEMs) (Bollen, 1989). Later amore complex
system Bayesian Network (BN) (Pearl, 2000; Spirtes, Glymour,
& Scheines, 1993) was designed to provide structural construc-
tion conditions using probability criteria for dependent features.
Bayesian analysis only provides the functionality to construct
DAGs using Bayesian low, graph d-separation, Markov Equivalent
Classes, v-structures, Markov Blanket and Markov Chain Monte
Carlo (MCMC) simulation. These assumptions lead to a model
where nodal relations are defined only using the directed edges
and weights of connection strengths to show the amount of infor-
mation passed on. By definition, the works carried out on causal
analysis only establish the model in the form of directed acyclic
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graph with weighted values on the edge to find the causal model.
But none of these inform the quality of causal inference.

Most causal models such as Geiger and Heckerman (1994),
Pearl (2000) and Spirtes et al. (1993) use Gaussian assumption
of the data to provide causal reasoning using Markov Equivalent
Classes. Non-Gaussian properties of data can solve the problem
for better approximation over real-world cases, and so the model
of Linear Non-Gaussian Acyclic Model (LiNGAM) was proposed
by Shimizu, Hyvärinen, Kano, and Hoyer (2005) for causal dis-
covery. The LiNGAM works with Independent Component Anal-
ysis (ICA) to estimate causal ordering by measuring the effects
of different components independently. If it is known how one
feature affects the other, then the causal direction can be found.
The successive arrangement of causal directions, starting from the
most independent node to the most dependent node, provides
causal ordering. But in LiNGAM, they first estimate the order and
then from the order, they find the causal directions, which is an
incorrect process. In addition the later developments over LiNGAM
like Shimizu, Hoyer, Hyvärinen, and Kerminen (2006) and Shimizu
et al. (2011) also get it wrong.

The nonlinear causal discovery using the additive noise model
by Hoyer, Janzing, Mooij, Peters, and Schölkopf (2009) estimates
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causal directions in two variables using nonlinear functions over
joint probability densities of the independent variable, added with
arbitrary noise. The bivariate model is capable of finding direc-
tions by comparing two variables at a time. The problem with the
bivariate model is in the accuracy of estimation, when a node or
feature is dependent on multiple other features, that is if multiple
nodes have causal directions towards a single node then themodel
estimates wrong directions. Causal discovery for the continuous
casewas given in Peters,Mooij, Janzing, and Schölkopf (2014) using
the additive noise model. This model relies on the independence
of residuals while observed nodes are regressed on each other. The
dependency is measured using the Hilbert–Schmidt independence
criterion by taking minus log over the functions of the feature set.
Although the method claims to detect all possible edges in the
model, the results show that method fails mostly for multivariate
datawith large node sets. The additive noisemodel for cyclic causal
models was proposed by Mooij, Janzing, Heskes, and Schölkopf
(2011). But they have only considered the case for bivariate model
and their system is restricted to bivariate Gaussian-noisy models.

All the proposed works on bivariate analysis fail to hold on
to the graph d-separation condition. The d-separation uses triplet
node sets (a set of 3 nodes at least) to observe the flow of informa-
tion between parent and child nodes by blocking connected paths.
While using a bivariate model, the d-separation criteria cannot
be verified, which is a fundamental and essential condition for
defining the causal models. So, an effective and easier method of
multivariate analysis is proposed in this paper, to find the complete
causal structure using amultivariate additive noisemodel. It shows
that the proposed method is fully capable of constructing multi-
nodal causal structures for complete causal analysis. The insuffi-
ciency of the bivariate model which leads to the development of
MANM is discussed, to provide the necessity of the proposition.

The conditional independence for causal inference is not one
of the best tools for the estimation of independent features in
the observational set. While the findings of causal inference are
about qualitative analysis, the use of conditional independence/
dependence merely provides information on quantitative mea-
sures. As a solution to this, the causal independence is introduced
which is better suited for causal inference and analysis. The major
difference between conditional independence and causal indepen-
dence is discussed with the mathematical explanation to validate
the claim.

Until now, the proposed methods emphasize the computation
of directed edges from connection strength values. The connection
strength is a quantification of the information that flows from a
parent node to child node. On the other hand, the causal inference
is all about retrieving the influence of the informationwhich causes
it. Also, the issue of finding the goodness of causal inference has
not been addressed or pointed out yet. Only finding the values
for connection strengths which explicitly contribute towards the
measurement for the amount of information passed on, does not
conclude anything regarding the quality of inference. In this paper
for the first time, the new concept of the Causal Influence is in-
troduced, which provides the measure for the goodness of causal
inference. The value of causal influence is crucial to detect the
causal direction based on its influence on the child nodes. The
maximized causal influence factor (CIF) values are used for the
successful discovery of causal directions in the feature set when
the substructures are d-separable V-structures.

While most of the proposed methods do not scope for the
analysis of mixture models of Gaussian and non-Gaussian distri-
butions, the proposed MANM can handle these datasets with ease.
To show the capability of MANM method, the complexity of the
mixture models has been increased by making them both corre-
lated, uncorrelated and mixed cases of both in simulation tests.

The proposedmodel (MANM) is comparedwith Independent Com-
ponent Analysis based Linear Non-Gaussian Acyclic Model (ICA-
LiNGAM) (Shimizu et al., 2006), Greedy DAG Search (GDS) (Chick-
ering, 2002) and Regression with Sub-sequent Independent Test
(RESIT) (Peters et al., 2014) over simulated models and the test
results are provided in Section 5.3. The choice of these three meth-
ods is due to their major contributions and wide usability in causal
inference studies. Also, these all provide maximum inference on
any dataset of interest and can handle large node sets.

The main goal of causal analysis is to find the directionally
connected acyclic nodal structures which can be used for complete
causal explanation. While constructing such models, many prob-
lems arise, due to the wrongly estimated directions which result
in missing directions, and mostly due to overestimated extra sets
of directions. These issues are studied in comparison with ICA-
LiNGAM, GDS, and RESIT, to find the effectiveness and accuracy
of MANM while constructing causal models from the estimated
causal directions. Results for model under-fitting, reverse-fitting
and over-fitting are calculated using mathematical formulas and
graphs are provided to show the performances of MANM in com-
parison with other methods.

We start our discussion by defining the multivariate additive
noise model in Section 2, and the identifiability of the model
towards complete causal estimations is discussed in Section 3.
Section 4 provides the tools for estimation using the proposed
method and experimental results for simulated causal structures,
and real-world tests are provided in Section 5. The performance
of the proposed method is verified with ICA-LiNGAM, GDS and
RESIT, for their model constructibility and accuracy in Section 5.4.
A concise discussion of the work and future perspective are given
in Section 6.

2. Multivariate additive noise model: MANM

The proposed multivariate additive noise model (MANM) de-
pends on the imposed system assumptions to produce a complete
causal model in the form of Directed Acyclic Graphs (DAGs). The
assumptions are as follows for MANM: Consider the multi-nodal
structure G as a DAG with n number of nodes represented by {Xi}

where (i = 1, . . . , n) and each Xi is a matrix of (m × 1). All the
nodes in G are arranged in order from themost causal independent
node at the top of the graph to the least causal independent ones
towards the bottom. So, the edge directions in the DAG G are from
the top towards the bottom, and none of the nodes observed later
than the earlier ones have directed edge towards any earlier node.
The above assumptions produce a causal model where the graph
starts from the parent node and goes down to descendant nodes
while following a top-bottom graphical construction.

Causal independence. Any causal direction {xi → xj} can be de-
scribed using the causal order O(xi) > O(xj). Consider a child node
xh and its parent node set Pa(xh) = {xi, xj, xk, xl}, where parents are
of the following order {O(i) > O(j) > O(k) > O(l)}. Here xh (child
node) can only be influenced by the parent set Pa(xh) (xi, xj, xk, xl
are parents of xh) through the information transferred from the
parent nodes. The direction {Pa(xh)→ xh}makes Pa(xh) to become
causally independent of xh i.e. xh is causally dependent on Pa(xh)
as the information flows from parent to child node. Whereas both
Pa(xh) and xh are conditionally dependent on each other, which
is a quantitative information and not useful for causal analysis.
The next section provided a more detailed explanation of this.
Notice that every node in Pa(xh) has directed edges towards xh, but
the converse is not true. In the parent set node xi is most causal
independent and xl is least causal independent (as from the order
set).

While observing datasets, the variables are represented as
nodes in the causal model with multivariate relations. Assume
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