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a b s t r a c t

Low-Rank Representation (LRR) is arguably one of the most powerful paradigms for Multi-view spectral
clustering, which elegantly encodes the multi-view local graph/manifold structures into an intrinsic low-
rank self-expressive data similarity embedded in high-dimensional space, to yield a better graph partition
than their single-view counterparts. In this paper we revisit it with a fundamentally different perspective
by discovering LRR as essentially a latent clustered orthogonal projection based representation winged
with an optimized local graph structure for spectral clustering; each column of the representation is
fundamentally a cluster basis orthogonal to others to indicate its members, which intuitively projects
the view-specific feature representation to be the one spanned by all orthogonal basis to characterize the
cluster structures. Upon this finding, we propose our technique with the following: (1) We decompose
LRR into latent clustered orthogonal representation via low-rankmatrix factorization, to encode themore
flexible cluster structures than LRR over primal data objects; (2) We convert the problem of LRR into that
of simultaneously learning orthogonal clustered representation and optimized local graph structure for
each view; (3) The learned orthogonal clustered representations and local graph structures enjoy the
same magnitude for multi-view, so that the ideal multi-view consensus can be readily achieved. The
experiments over multi-view datasets validate its superiority, especially over recent state-of-the-art LRR
models.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Spectral clustering (Ng, Jordan, & Weiss, 2001), which par-
titions the data objects via their local graph/manifold structure
relying on the Laplacian eigenvalue–eigenvector decomposition,
is one fundamental clustering problem. Unlike K-Means cluster-
ing (Wu et al., 2008), the data objects within the same group
characterize not only the large data similarity but also the similar
local graph/manifold structure. With the rapid development of in-
formation technology, the data are largely availablewith themulti-
view feature representations (e.g., images can be featured by a
color histogram view or a texture view), which naturally paves the
way to multi-view spectral clustering. As extensively claimed by
themulti-view research (Deng et al., 2015; Li, Nie, Huang, &Huang,
2015; Nie, Cai, & Li, 2017; Xu, Tao, & Xu, 2015), the information
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encoded by multi-view features describes different properties;
thus leveraging the multi-view information can outperform the
single-view counterparts. One critical issue on a successful multi-
view incorporation implied by the existing work (Gui et al., 2014;
Kumar & Daume, 2011;Wang, Lin,Wu, & Zhang, 2017;Wang et al.,
2015; Wang, Wu, Lin, & Gao, 2018; Wang, Zhang, Wu, Lin, & Zhao,
2017) lies in how to achieve the multi-view consensus/agreement.

Following such principle, a lot of multi-view clustering meth-
ods (Gao, Han, Liu, & Wang, 2013; Gao, Nie, Li, & Huang, 2015)
claim that similar data objects should be within the same group
across all views. Based on that, the consensus multi-view local
manifold structure is further explored with great efforts (Kumar
& Daume, 2011; Kumar, Rai, & Daume, 2011; Wang et al., 2016;
Xia, Pan, Du, &Yin, 2014) formulti-view spectral clustering. Among
all these methods, Low-Rank Representation (LRR) (Liu, Lin, & Yu,
2010) coupled with sparse decomposition based model has been
emerged as a substantially elegant solution, due to its strength
of exploring their intrinsic low-dimensional manifold structure
encoded by the data correlations embedded in high-dimensional
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space, while exhibiting strong robustness to feature noise corrup-
tions addressed by sparse noise modeling, hence attracting great
attention.

Before proceeding further, some notations that are used
throughout the paper are shown below.

1.1. Notations

For Matrix M , the trace of M is denoted as Tr(M); ∥M∥F =√∑
i,jM

2
i,j (or ∥ · ∥2 for vector space) denotes the Frobenius norm;

∥M∥1(
∑

i,j|Mi,j|) is the ℓ1 norm, and MT denotes the transpose of
M , and its unclear normas ∥M∥∗ (sumof all singular values);M(i, ·)
andM(·, i) as the ith row and column ofM .M ⪰ 0means all entries
ofM are nonnegative. I is the identity matrix with adaptive size. 1
indicates the vector of adaptive length with all entries to be 1. |·|
indicates the cardinality of the set.

1.2. Motivation: LRR revisited for multi-view spectral clustering

Specifically, the typical LRR model for multi-view spectral clus-
tering stems from the formulation below:

min
Z,Ei

∥Z∥∗ + λ
∑
i∈V

∥Ei∥1

s.t. Xi = XiZ + Ei, i ∈ V , Z ⪰ 0,
(1)

where Xi ∈ Rdi×n is the data representation for the ith viewwith di
as its feature dimension, n as the number of data objects identical
for each view, λ is the balance parameter, and V is the view set.
Z ∈ Rn×n is the self-expressive low-rank similarity representation
shared by all |V | views, constrained with ∥Z∥∗ based on Xi(i ∈ V ),
which can also be substituted by the other specific dictionaries;
∥Ei∥1 is modeled to address the noise-corruption for the ith view-
specific feature representation. Z ⪰ 0 ensures the nonnegativity
for all its entries. Based on such optimized low-rank Z , the spectral
clustering is finally conducted. One significant limitation of Eq. (1)
pointed out by Wang et al. (2016) is that, only one common Z
is learned to preserve the flexible local manifold structures for all
views, hence fails to achieve the ideal spectral clustering result.
To this end, various low-rank Zi are learned to preserve the ith
view-specific local manifold structures, meanwhileminimize their
divergence via an iterative-views-agreement strategy for multi-
view consensus, followed by a final spectral clustering stage.
Despite its encouraging performance, the following standout lim-
itations are inattentively overlooked for LRR model: (1) The low-
rank data similarity may not well encode the flexible latent cluster
structures over primal view-specific feature space; worse still for
the non-ideal local graph construction over such representation
for spectral clustering; (2) The low-rank data similarities coming
from multi-views may not be within the same magnitude, so that
the divergenceminimizationmay not achieve the idealmulti-view
clustering consensus.

Our new perspective. The above facts motivate us to revisit the
low-rank representation Zi to help XiZi reconstruct Xi below for the
ith view

min
Zi∈S

∥Xi − XiZi∥2
F , (2)

where S denotes the set of Zi ∈ Rn×n with low-rankness e.g., clus-
ter number c far less than di; Instead of narrowing Low-Rank Zi
as self-expressive data similarity from the conventional viewpoint,
it is essentially seen as a special case of a generalized Low-Rank
projection, to map feature representation to a low-dimensional
space to reconstruct Xi withminimum error. As discussed, the self-
expressive similarity projection equipped with LRR models still
suffer from the aforementioned non-trivial limitations.

Here we ask a question: Is there a superior low-rank projection
Zi to minimize Eq. (2), meanwhile address the limitations over the
existing LRRmodels. Our answer to this question is positive. Specif-
ically, we propose to consider Zi as a latent clustered orthogonal
projection, via Zi = UiUT

i , where

1. Clustered orthogonal projection: Ui ∈ Rn×c , where each
column indicates one cluster to characterize its belonging
data objects. Comparedwith LRR over original feature space,
the latent factor Ui can better preserve the flexible latent
cluster structure.

2. Feature reconstruction with cluster basis: Instead of low-
rank data similarity, Zi essentially serves as a mapping to
reconstruct the view-specific features via the column of Ui
to encode the latent cluster structures.

3. Rethinking XiZi: We revisit the intuition of XiZi via (XiUi)UT
i

throughout two stages, remind that Xi ∈ Rdi×n where

• XiUi is performed to obtain the new projection value
for all di features over c orthogonal columns of Ui;

• XiUiUT
i is subsequently the projected representation

for all di features spanned by c clustered orthogonal
column basis of Ui.

4. Same magnitude for multi-view consensus: All Ui(i ∈

V ) enjoy the same magnitude due to their orthonormal
columns. Hence, the feasible divergence minimization will
facilitate the multi-view consensus.

Before shedding light on our technique, we review the typical
related work for multi-view spectral clustering.

1.3. Prior arts

The prior arts can be classified as per the strategy at which the
multi-view fusion takes place for spectral clustering.

The most straightforward method goes to the Early fu-
sion (Huang, Liu, Zhang, & Metaxas, 2010) by concatenating the
multi-view feature vectors with equal or varied weights into an
unified one, followed by the spectral clustering over such unified
space. However, such method ignores the statistical property be-
longing to an individual view. Late fusion (Greene & Cunningham,
2009) may address the limitation to some extents by aggregating
the spectral clustering result from each individual view, which
follows the assumption that all views are independent to each
other. Such assumption is not effective for multi-view spectral
clustering as they assume the views to be dependent so that the
multi-view consensus information can be exploited for promising
performance.

Canonical Correlation Analysis (CCA) is applied for multi-view
spectral clustering (Chaudhuri, Kakade, Livescu, & Sridharan,
2009) by learning a common low-dimensional representations for
all views, upon which the spectral clustering is performed. One
salient drawback lies in the failure of preserving the flexible local
manifold structures for different views via such common subspace.
Co-training based model (Kumar & Daume, 2011) learned the
Laplacian eigenmap for each view over its projected data represen-
tation throughout the Laplacian eigenmaps from other views, such
process repeated till the convergence, the final similarity are then
aggregated for spectral clustering. A similar method (Kumar et al.,
2011) is also proposed to coordinate multi-view Laplacian eigen-
maps consensus for spectral clustering. Despite their effectiveness,
they have to follow the scenario of noise free for the feature repre-
sentations. Unfortunately, it cannot be met in practice. The Low-
Rank Representation and sparse decomposition models (Wang
et al., 2016; Xia et al., 2014) well tackle the problem, meanwhile
exhibits the robustness to feature noise corruptions. However, they
still suffer from the aforementioned limitations. To this end, we
make the following orthogonal contributions to typical LRR model
for multi-view spectral clustering.
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