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a b s t r a c t

Multilayer bootstrap network builds a gradually narrowed multilayer nonlinear network from bottom
up for unsupervised nonlinear dimensionality reduction. Each layer of the network is a nonparametric
density estimator. It consists of a group of k-centroids clusterings. Each clustering randomly selects data
points with randomly selected features as its centroids, and learns a one-hot encoder by one-nearest-
neighbor optimization. Geometrically, the nonparametric density estimator at each layer projects the
input data space to a uniformly-distributed discrete feature space, where the similarity of two data points
in the discrete feature space is measured by the number of the nearest centroids they share in common.
The multilayer network gradually reduces the nonlinear variations of data from bottom up by building a
vast number of hierarchical trees implicitly on the original data space. Theoretically, the estimation error
caused by the nonparametric density estimator is proportional to the correlation between the clusterings,
both of which are reduced by the randomization steps.

© 2018 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Principal component analysis (PCA) (Pearson, 1901) is a simple
and widely used unsupervised dimensionality reduction method,
which finds a coordinate system in the original Euclidean space
that the linearly uncorrelated coordinate axes (called principal
components) describe the most variances of data. Because PCA is
insufficient to capture highly-nonlinear data distributions, many
dimensionality reduction methods are explored.

Dimensionality reduction has two core steps. The first step finds
a suitable feature spacewhere the density of datawith the new fea-
ture representation can bewell discovered, i.e. a density estimation
problem. The second step discards the noise components or small
variations of the data with the new feature representation, i.e. a
principal component reduction problem in the new feature space.

Dimensionality reduction methods are either linear (He &
Niyogi, 2004) or nonlinear based on the connection between the
data space and the feature space. This paper focuses on nonlinear
methods, which can be categorized to three classes. The first class
is kernel methods. It first projects data to a kernel-induced feature
space, and then conducts PCA or its variants in the new space.
Examples include kernel PCA (Schölkopf, Smola, & Müller, 1998),
Isomap (Tenenbaum,De Silva, & Langford, 2000), locally linear em-
bedding (LLE) (Roweis & Saul, 2000), Laplacian eigenmaps (Belkin
& Niyogi, 2003; Ng, Jordan, & Weiss, 2002; Shi & Malik, 2000),
t-distributed stochastic neighbor embedding (t-SNE) (Van der
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Maaten & Hinton, 2008), and their generalizations (Nie, Zeng,
Tsang, Xu, & Zhang, 2011; Yan et al., 2007). The second class is
probabilistic models. It assumes that data are generated from an
underlying probability function, and takes the posterior param-
eters as the feature representation. Examples include Gaussian
mixture model and latent Dirichlet allocation (Blei, Ng, & Jordan,
2003). The third class is autoassociative neural networks (Hinton
& Salakhutdinov, 2006). It learns a piecewise-linear coordinate
system explicitly by backpropagation, and uses the output of the
bottleneck layer as the new representation.

However, the feature representations produced by the afore-
mentioned methods are defined in continuous spaces. A funda-
mental weakness of using a continuous space is that it is hard to
find a simple mathematical form that transforms the data space
to an ideal continuous feature space, since a real-world data dis-
tribution may be non-uniform and irregular. To overcome this
difficulty, a large number of machine learning methods have been
proposed, such as distance metric learning (Xing, Jordan, Russell,
& Ng, 2002) and kernel learning (Lanckriet, Cristianini, Bartlett,
Ghaoui, & Jordan, 2004) for kernel methods, and Dirichlet process
prior for Bayesian probabilistic models (Teh, Jordan, Beal, & Blei,
2005), in which advanced optimization methods have to be ap-
plied. Recently, learning multiple layers of nonlinear transforms,
named deep learning, is a trend (Hinton & Salakhutdinov, 2006). A
deep network contains more than one nonlinear layers. Each layer
consists of a group of nonlinear computational units in parallel.
Due to the hierarchical structure and distributed representation at
each layer, the representation learning ability of a deep network is
exponentially more powerful than that of a shallow networkwhen
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given the same number of nonlinear units. However, the devel-
opment of deep learning was mostly supervised, e.g. He, Zhang,
Ren, and Sun (2016), Hinton et al. (2012), Schmidhuber (2015),
Wang and Chen (2017), Wang, Qin, Nie, and Yuan (2017) and Zhou
and Feng (2017). To our knowledge, deep learning for unsuper-
vised dimensionality reduction seems far from explored (Hinton
& Salakhutdinov, 2006).

To overcome the aforementioned weakness in a simple way,
we revisit the definition of frequentist probability for the density
estimation subproblem of dimensionality reduction. Frequentist
probability defines an event’s probability as the limit of its relative
frequency in a large number of trials (Wikipedia, 2017). In other
words, the density of a local region of a probability distribution
can be approximated by counting the events that fall into the local
region. This paper focuses on exploring this idea. To generate the
events, we resort to random resampling in statistics (Efron, 1979;
Efron & Tibshirani, 1993). To count the events, we resort to one-
nearest-neighbor optimization and binarize the feature space to a
discrete space.

To further reduce the small variations and noise components of
data, i.e. the second step of dimensionality reduction, we extend
the density estimator to a gradually narrowed deep architecture,
which essentially builds a vast number of hierarchical trees on
the discrete feature space. The overall simple algorithm is named
multilayer bootstrap networks (MBN).

To our knowledge, although ensemble learning (Breiman,
2001; Dietterich, 2000; Freund & Schapire, 1995; Friedman, Hastie,
Tibshirani, et al., 2000; Tao, Tang, Li, & Wu, 2006), which was trig-
gered by random resampling, is a large family of machine learning,
it is not very prevalent in unsupervised dimensionality reduction.
Furthermore, we did not find methods that estimate the density of
data in discrete spaces by random resampling, nor their extensions
to deep learning.

This paper is organized as follows. In Section 2, we describe
MBN. In Section 3, we give a geometric interpretation of MBN.
In Section 4, we justify MBN theoretically. In Section 5, we study
MBN empirically. In Section 6, we introduce some related work. In
Section 7, we summarize our contributions.

2. Multilayer bootstrap networks

2.1. Network structure

MBN contains multiple hidden layers and an output layer
(Fig. 1). Each hidden layer consists of a group of mutually inde-
pendent k-centroids clusterings; each k-centroids clustering has k
output units, each of which indicates one cluster; the output units
of all k-centroids clusterings are concatenated as the input of their
upper layer. The output layer is PCA.

The network is gradually narrowed from bottom up, which is
implemented by setting parameter k as large as possible at the
bottom layer and be smaller and smaller along with the increase
of the number of layers until a predefined smallest k is reached.

2.2. Training method

MBN is trained layer-by-layer from bottom up.
For training each layer given a d-dimensional input data set

X = {x1, . . . , xn} either from the lower layer or from the original
data space, we simply need to focus on training each k-centroids
clustering, which consists of the following steps:

• Random sampling of features. The first step randomly
selects d̂ dimensions of X (d̂ ≤ d) to form a subset of X ,
denoted as X̂ =

{
x̂1, . . . , x̂n

}
.

Fig. 1. Network structure. The dimension of the input data for this demo network
is 4. Each colored square represents a k-centroids clustering. Each layer contains
3 clusterings. Parameters k at layers 1, 2, and 3 are set to 6, 3, and 2 respectively.
The outputs of all clusterings in a layer are concatenated as the input of their upper
layer. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

• Random sampling of data. The second step randomly se-
lects kdata points from X̂ as the k centroids of the clustering,
denoted as {w1, . . . ,wk}.

• One-nearest-neighbor learning. Thenew representation of
an input x̂ produced by the current clustering is an indicator
vector h which indicates the nearest centroid of x̂. For ex-
ample, if the second centroid is the nearest one to x̂, then
h = [0, 1, 0, . . . , 0]T . The similarity metric between the
centroids and x̂ at the bottom layer is customized, e.g. the
squared Euclidean distance argmink

i=1∥wi − x̂∥2, and set to
argmaxki=1w

T
i x̂ at all other hidden layers.

2.3. Novelty and advantages

Twonovel components ofMBNdistinguish it fromother dimen-
sionality reduction methods.

The first component is that each layer is a nonparametric den-
sity estimator based on resampling, which has the followingmajor
merits:

• It estimates the density of data correctly without any prede-
fined model assumptions. As a corollary, it is insensitive to
outliers.

• The representation ability of a group of k-centroids cluster-
ings is exponentially more powerful than that of a single
k-centroids clustering.

• The estimation error introduced by binarizing the feature
space can be controlled to a small value by simply increasing
the number of the clusterings.

The second component is thatMBN reduces the small variations
and noise components of data by an unsupervised deep ensemble
architecture, which has the following main merits:

• It reduces larger and larger local variations of data gradually
from bottom up by building as many as O(kL2V ) hierarchical
trees on the data space (instead of on data points) implicitly,
where L is the total number of layers, kL is parameter k at the
Lth layer, V is the number of the clusterings at the layer, and
function O(·) is the order in mathematics.
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