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Big high dimensional data is becoming a challenging field of research. There exist a lot of techniques which
infer information. However, because of the curse of dimensionality, a necessary step is the dimensionality
reduction (DR) of the information. DR can be performed by linear and nonlinear algorithms. In general,
linear algorithms are faster because of less computational burden. A related problem is dealing with time-
varying high dimensional data, where the time dependence is due to nonstationary data distribution. Data
stream algorithms are not able to project in lower dimensional spaces. Indeed, only linear projections,
like principal component analysis (PCA), are used in real time while nonlinear techniques need the whole
database (offline). The Growing Curvilinear Component Analysis (GCCA) neural network addresses this
problem; it has a self-organized incremental architecture adapting to the changing data distribution
and performs simultaneously the data quantization and projection by using CCA, a nonlinear distance-
preserving reduction technique. This is achieved by introducing the idea of “seed”, pair of neurons which
colonize the input domain, and “bridge”, a novel kind of edge in the manifold graph, which signals the
data non-stationarity. Some artificial examples and a real application are given, with a comparison with
other existing techniques.
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1. Introduction example, to all applications of real time pattern recognition, where
the data reduction step plays a very important role: fault diagnosis,

DATA mining is more and more facing the extraction of mean- novelty detection, intrusion detection for alarm systems, speech,

ingful information from big data (e.g. from internet), which is
often very high dimensional. For both visualization and automatic
purposes, their dimensionality has to be reduced. This is also
important in order to learn the data manifold, which, in general,
is lower dimensional than the original data. Dimensionality reduc-
tion (DR) also mitigates the curse of dimensionality: e.g., it eases
classification, analysis and compression of high-dimensional data.

Most DR techniques work offline, i.e. they require a static
database (batch) of data, whose dimensionality is reduced. They
can be divided into linear and nonlinear techniques, the latter
being in general slower, but more accurate in real world scenarios.
See for an overview (Van der Maaten, Postma, & Van der Herik,
2009).

However, the possibility of using a DR technique working in
real time is very important, because it allows not only having a
projection after only the presentation of few data (i.e. a very fast
projection response), but also tracking non-stationary data distri-
butions (e.g. time-varying data manifolds). This can be applied, for
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face and text recognition, computer vision and scene analysis and
so on.

Working in real time requires a data stream, a continuous input
for the DR algorithms, which are defined as on-line or, sometimes,
incremental (synonym of non-batch). They require, in general, data
drawn from a stationary distribution. The fastest algorithms are
linear and use the Principal Component Analysis (PCA) by means
of linear neural networks, like the Generalized Hebbian Algorithm
(GHA, Sanger, 1989), the Adaptive Principal-component Extractor
(APEX, Diamantaras & Kung, 1996) and the incremental PCA (can-
did covariance-free CCIPCA, Weng, Zhang, & Hwang, 2003).

Nonlinear DR techniques are not suitable for online applica-
tions. Many efforts have been tried in order to speed-up these
algorithms: updating the structure information (graph), new data
prediction, embedding updating. However, these incremental ver-
sions (e.g. iterative LLE, Kouropteva, Okun, & Pietikainen, 2005,
incremental Laplacian eigenmaps, Jia, Yin, Huang, & Hu, 2009,
incremental Hessian LLE, Li et al., 2011) require too a cumbersome
computational burden and are useless in real time applications.

Neural networks can also be used for data projection. In general,
they are trained offline and used in real time (recall phase). In this


https://doi.org/10.1016/j.neunet.2018.03.017
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2018.03.017&domain=pdf
mailto:giansalvo.cirrincione@u-picardie.fr
mailto:vincenzo.randazzo@polito.it
mailto:eros.pasero@polito.it
https://doi.org/10.1016/j.neunet.2018.03.017

G. Cirrincione et al. / Neural Networks 103 (2018) 108-117 109

case, they work only for stationary data and can be better consid-
ered as implicit models of the embedding. Radial basis functions
and multilayer perceptrons work well for this purpose (out-of-
sample techniques). However, their adaptivity can be exploited
either by creating ad hoc architectures and error functions (de Rid-
der & Duin, 1997) or by using self-organizing maps (SOM) and
variants (Qiang, Cheng, & Li, 2010). The former comprises mul-
tilayer perceptrons trained on a precomputed Sammon’s mapping
or with a backpropagation rule based on the Sammon’s technique
and an unsupervised architecture (SAMANN, Mao & Jain, 1995).
These techniques require the stationarity of their training set. The
same problem affects the deep neural autoencoders (Hinton &
Salakhutdinov, 2006), which are trained for modeling the data
reduction. They are multilayer feed-forward neural networks with
an odd number of hidden layers and shared weights between the
top and bottom layers; sigmoid activation functions are generally
used (except in the middle layer, where a linear activation function
is usually employed). The main weakness of autoencoders is that
their training may converge very slowly, especially in cases where
the input and target dimensionality are very high (since this yields
a high number of weights in the network). In addition, they are
limited by the presence of local optima in the objective function.

The latter family of neural networks comprises the self-
organizing feature maps (SOM, Kohonen, Schroeder & Huang,
2001) and its incremental variants. SOM is inherently a feature
mapper with fixed topology (which is also its limit). Its variants
have no topology (neural gas, NG, Martinetz & Schulten, 1991) or a
variable topology and pave the way to pure incremental networks
like growing neural gas (GNG, Fritzke, 1995). These networks,
in conjunction with the Competitive Hebbian Rule (CHR, White,
1992), create a graph representing the manifold, which is the first
step for most DR techniques. NG plus CHR is called Topology repre-
senting network (TRN, Martinetz & Schulten, 1994). The approach
is called TRNMap (Vathy-Fogarassy, Kiss, & Abonyi, 2008) if the
DR technique is a multidimensional scaling (MDS); it is called RBF-
NDR (Tomenko, 2011) if the projection is modeled by an RBF
with an error function based on geodesic and Euclidean distances:
in both cases, the projection follows the graph estimation, which
results in the impossibility to track changes in real time. If the
graph is computed by GNG, then the DR can be computed by OVI-
NG (Estevez & Figueroa, 2006), if Euclidean distances are used,
and GNLG-NG (Estevez, Chong, Held, & Perez, 2006) if geodesic
distances replace Euclidean distances. However, from the point
of view of real time applications, only the former is interesting,
because it estimates, in the same time, the graph updating and its
projection.

For data drawn from a nonstationary distribution (nonstation-
ary data stream), as it is the case for fault and pre-fault diagnosis
and system modeling, the above-cited techniques basically fail.
For instance, the methods based on geodesic distances always
require a connected graph. If the distribution changes abruptly
(jump), they cannot track anymore. Apart the linear techniques,
like PCA, which, for their speed, can be adapted to this problem,
but are forcedly approximations in case of nonlinearities, only the
variant of SOM, called DSOM (Rougier & Boniface, 2011), can
be used. It exploits some changes of the SOM learning law in
order to avoid a quantization proportional to the data distribution
density. However, what is more interesting is the use of constant
parameters (learning rate, elasticity) instead of time-decreasing
ones. As a consequence, DSOM is able to promptly react to changing
inputs. Unfortunately, it is a forgetting network, in the sense that it
forgets the past information and only tracks the last changes. This
is a serious problem, especially in case the past inputs would carry
useful information. There are also neural networks, like SOINN and
its variants (Shen, Tomotaka, & Hasegawa, 2007), which record the
whole life of the process to be modeled (life-long learning), but

are not able to project the information into a lower dimensional
space. Nonetheless, they can be considered as a preprocessing
clustering stage before the dimensionality reduction step. As a
consequence, DR tools can be chosen according to the interest in
either a network tailored only on the last data (forgetting network)
or the whole (life-long) story, if, for instance, the data can repeat in
the future. However, this preprocessing step is outside the scope
of this paper, which is centered on the dimensionality reduction
step. The same observation can be repeated for the data stream
clustering methods (Ghesmoune, Lebbah, & Azzag, 2016). There
exist techniques which can be categorized according to the nature
of their underlying clustering approach, like: GNG based methods,
which are incremental versions (e.g., G-Stream, Ghesmoune, Az-
zag, & Lebbah, 2014) of the Growing Neural Gas neural network,
hierarchical stream methods, like BIRCH (Zhang, Ramakrishnan, &
Livny, 1996) and ClusTree (Kranen, Assent, Baldauf, & Seidl, 2016),
partitioning stream methods, like CluStream (Aggarwal et al.,
2003), and density-based stream methods, like DenStream (Cao,
Ester, Qian, & Zhou, 2006) and SOStream (Isaksson, Dunham, &
Hahsler, 2012), which is inspired by SOM. No technique takes the
dimensionality reduction step into account, which is necessary in
case of high dimensional streams. Only in Hontabat and Rising
(2016) this problem is considered by applying a variant of the deep
autoencoder, called the Variational Autoencoder (VAE, Kingma &
Welling, 2014) for DR. There is a significant improvement in the
clustering accuracy of high dimensional datasets, but, not all clus-
tering algorithms benefit in the same way from DR. Additionally,
regardless of the clustering algorithm, no relevant improvement
in the purity of the clusters can be obtained. However, the theory
underlying this DR technique is completely different from the
classical techniques and is not taken into account in this paper.

Recently, an ad hoc architecture, somewhat in the GNG based
category, has been proposed (onCCA, Cirrincione, Hérault, & Ran-
dazzo, 2015), which addresses this problem by using an incre-
mental quantization synchronously with a fast projection based on
the Curvilinear Component Analysis (CCA, Demartines & Hérault,
1997; Sun, Crowe, & Fyfe, 2010). This neural network requires an
initial architecture provided by a fast offline CCA.

The growing CCA (GCCA, Cirrincione, Randazzo, & Pasero, 2018;
Kumar, Randazzo, Cirrincione, Cirrincione, & Pasero, 2017) neural
network is an improved version of onCCA, which, by using the
new idea of seed, does not need an initial CCA architecture. It also
uses the principle of bridges in order to detect changes in the data
stream.

This paper is an extensive description and analysis of GCCA.
After the presentation of the traditional (offline) CCA in Section 2,
Section 3 presents some online algorithms such as OVI-NG and
DSOM. Section 4 introduces the new algorithm and discusses both
its basic ideas and the influence of its user-dependent parameters.
Section 5 shows the results of a few simulations on artificial prob-
lems and a real application. Section 6 yields the conclusions.

2. The curvilinear component analysis

One of the most important non-linear techniques for di-
mensionality reduction is the Curvilinear Component Analysis
(CCA, Demartines & Hérault, 1997; Sun et al.,2010), which is a non-
convex technique based on weighted distances. It derives from the
Sammon mapping (Van der Maaten et al., 2009), but improves it
because of its properties of unfolding data and extrapolation. CCA
is a self-organizing neural network (see Fig. 1), which performs
the quantization of a data training set (input space, say X) for
estimating the corresponding non-linear projection into a lower
dimensional space (latent space, say Y). Two weights are attached
to each neuron. The first one has the dimensionality of the X
space and is here called X-weight: it quantizes the input data. The
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