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a b s t r a c t

We demonstrate supervised learning in Spiking Neural Networks (SNNs) for the problem of handwritten
digit recognition using the spike triggered Normalized Approximate Descent (NormAD) algorithm. Our
network that employs neurons operating at sparse biological spike rates below 300 Hz achieves a
classification accuracy of 98.17% on theMNIST test database with four times fewer parameters compared
to the state-of-the-art. We present several insights from extensive numerical experiments regarding
optimization of learning parameters and network configuration to improve its accuracy.We also describe
a number of strategies to optimize the SNN for implementation in memory and energy constrained
hardware, including approximations in computing the neuronal dynamics and reduced precision in
storing the synaptic weights. Experiments reveal that even with 3-bit synaptic weights, the classification
accuracy of the designed SNN does not degrade beyond 1% as compared to the floating-point baseline.
Further, the proposed SNN, which is trained based on the precise spike timing information outperforms
an equivalent non-spiking artificial neural network (ANN) trained using back propagation, especially at
low bit precision. Thus, our study shows the potential for realizing efficient neuromorphic systems that
use spike based information encoding and learning for real-world applications.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The superior computational efficiency of biological systems has
inspired the quest to reverse engineer the brain in order to develop
intelligent computing platforms that can learn to execute a wide
variety of data analytics and inference tasks (NAE, 2009). Artificial
neural networks (ANNs), inspired by the network architecture of
the brain, have emerged as the state-of-the-art for variousmachine
learning applications. In particular, inspired by the Nobel prize
winning work of Hubel andWeisel on elucidating the mechanisms
of information representation in the visual cortex (Hubel &Wiesel,
1968), multi-layer convolutional neural networks have shown im-
pressive performance for a wide variety of applications such as im-
age recognition, natural language processing, speech recognition
and video analytics (Ciregan, Meier, & Schmidhuber, 2012; Gold-
berg, 2016; Goodfellow, Bengio, & Courville, 2016; Goodfellow,
Warde-Farley,Mirza, Courville, & Bengio, 2013; Hinton et al., 2012;
Hinton, Osindero, & Teh, 2006; Karpathy et al., 2014; Krizhevsky,
Sutskever, & Hinton, 2012; Lecun, Bottou, Bengio, & Haffner, 1998).

Nevertheless, the neurons in ANNs implement a memoryless
nonlinear transformation of the input synaptic signals to create
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real-valued output signals. This is vastly different from the behav-
ior of neurons in the brain, which encode information in the timing
of binary signals, called action potentials or spikes based on the
timing of incoming spike signals from upstream nodes. The third
generation of artificial neural networks, also called spiking neural
networks (SNNs), have been introduced tomimic this key aspect of
information processing in the brain (Maass, 1997). There is grow-
ing evidence that SNNs have significant computational advantages
as a result of their higher information representational capacity
due to the incorporation of the temporal dimension (Brader, Senn,
& Fusi, 2007; Crotty & Levy, 2005; Gutig & Sompolinsky, 2006;
Hopfield & Brody, 2004). Furthermore, SNNs issue spikes sparsely –
the observed spike rate in biological networks is in the range
of 0.1 to 300 Hz – and they operate in an event-driven manner
(Gabbiani & Metzner, 1999; Roxin, Brunel, Hansel, Mongillo, & van
Vreeswijk, 2011; Shoham, O’Connor, & Segev, 2006; Wang et al.,
2016). Therefore, highly energy efficient neuromorphic systems
can be realized in hardware based on SNNs, as is evidenced by
recent demonstrations (Benjamin et al., 2014; Furber, Galluppi,
Temple, & Plana, 2014; Gehlhaar, 2014; Merolla et al., 2014; Qiao
et al., 2015).

Earlier efforts to build learning algorithms for SNNs were in-
spired by recent discoveries from neuroscience that shed light on
the synaptic (neuronal interconnections) mechanisms of adapta-
tion based on the difference in the times of issue of pre- and
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post-synaptic spikes. The most prominent among them is the
Remote Supervised Method (ReSuMe) (Ponulak & Kasinski, 2010),
that adjusts the synaptic weights based on the precise timing
differences of the input and output neurons, inspired by the spike
timingdependent plasticity (STDP) rule. Other spike based learning
algorithms that have been proposed include the SpikeProp algo-
rithm (though it was restricted to single spike learning) (Bohte,
Kok, & La Poutre, 2002), SPAN and PSD, which converted spikes
to smoothened analog signals and defined a continuous time cost
function for training (Mohemmed, Schliebs, Matsuda, & Kasabov,
2012; Yu, Tang, Tan, & Li, 2013). Another important spike based
supervised learning rule was the Chronotron rule which used
piece-wise gradient descent and was demonstrated to be efficient
in identifying different classes of random spike trains (Florian,
2012). Recently, the reward modulated STDP or R-STDP learning
has shown superior performance on several benchmark problems
compared to STDP SNNs and even traditional CNNs, even though
training was limited to a single layer in the network (Mozafari,
Kheradpisheh, Masquelier, Nowzari-Dalini, & Ganjtabesh, 2017).
A variant of ReSuMe algorithm, called the Delay Learning (DL)-
ReSuMe, in addition to the synaptic weights, made use of the
transmission delays of synapses interconnecting the neurons as
parameters to train the network (Taherkhani, Belatreche, Li, &
Maguire, 2015). This algorithm has been shown to be superior in
terms of accuracy and speed of convergence compared to the basic
ReSuMe algorithm. The accurate synaptic efficiency adjustment
method is another spike-error triggered supervised learning rule
based on STDP, which optimizes a cost function defined in terms
of membrane potential differences (Xie, Qu, Yi, & Kurths, 2017).
This method has been used to demonstrate excellent performance
in several UCI datasets with few training parameters. The Synaptic
Kernel Inverse Method (SKIM) (Tapson et al., 2013) evaluates the
weights analytically rather than learning them iteratively and has
been applied to the problem of speech based digit recognition in
a small network with 50 neurons. Based on the SKIM method,
the convex optimized synaptic efficiencies (CONE) algorithm was
developed (Lee, Kukreja, & Thakor, 2017) and was used for the
problem of gait detection. The generalization capability of this
algorithm and the noise tolerance of a variation of the algorithm
called CONE-R has also been demonstrated.

Our work focuses on applying a precise spike based supervised
learning algorithm to the MNIST (Modified National Institute of
Standards and Technology database) handwritten digit classifica-
tion problem and optimizing the network in terms of the number
of learning parameters for implementation in energy and memory
constrained hardware.

In addition to the above mentioned learning methods, unsu-
pervised learning algorithms for SNNs have also been explored,
based on the biological spike timing dependent plasticity (STDP)
rule (Allred & Roy, 2016; Diehl & Cook, 2015; Kheradpisheh, Gan-
jtabesh, Thorpe, & Masquelier, 2017; Masquelier & Thorpe, 2007;
Panda & Roy, 2016; Roy & Basu, 2017; Tavanaei & Maida, 2017).
While these networks usemulti-layered convolution architectures
with more than one million parameters and have achieved over
98% accuracy on the MNIST dataset (Kheradpisheh et al., 2017;
Tavanaei & Maida, 2017), we demonstrate similar accuracy with
13× fewer parameters.

There are also several efforts directed towards developing
architectures with adaptive and evolving network structures
(Kasabov, 2014; Kasabov et al., 2016; Takuya, Haruhiko, Hiroharu,
& Shinji, 2016; Wang, Belatreche, Maguire, & McGinnity, 2015,
2017). SpikeTemp and SpikeComp are algorithms where neurons
are progressively added in the classifier layer as the training algo-
rithm approaches the optimal point (Wang et al., 2015, 2017). The
recently developed evolving architecture called NeuCube, directly

inspired by the brain Kasabov (2014), incorporates weight adjust-
ments based on supervised and unsupervised rules and addition-
ally, adds new network neurons as per training requirements.

Besides the above-mentioned approaches for designing learn-
ing algorithms for SNNs that operate directly in the spike domain,
several authors have proposed to convert ANNs trained with the
well-established backpropagation algorithm to SNNs so that the
latter can be used as inference engines (Cao, Chen, & Khosla, 2015;
Diehl et al., 2015; Hunsberger & Eliasmith, 2016; Hunsberger, Eric,
2018; Rueckauer, Lungu, Hu, & Pfeiffer, 2016; Rueckauer, Lungu,
Hu, Pfeiffer, & Liu, 2017). ANN-to-SNN conversion imposes that
the firing rate of a spiking neuron in the SNN be proportional to
the activation output of a non-spiking neuron in the ANN. Vari-
ous techniques such as approximating the response of a spiking
neuron with a smooth differentiable ReLU-like function, weight
normalization, noise addition, lateral inhibition or spiking rate
based pooling masks, which is similar to max pooling operation,
have been employed to this end. Using these approaches, state-
of-the-art inference accuracies have been demonstrated in spike
domain equivalent of deep learning networks such as VGG-16 and
Inception-V13 for ImageNet classification problem, and close to 2×
reduction in the number of operations needed compared to CNNs
for smaller problems such as MNIST and CIFAR-10 (Rueckauer et
al., 2017). Recently, a more biologically plausible algorithm called
the Feedback Alignment (FA) has been proposed, which unlike the
standard backpropagation uses two different sets of weights in
the feed-forward and feedback paths (Lillicrap, Cownden, Tweed,
& Akerman, 2016). This method has also been demonstrated in
SNNs, using approximate differentiable functions of leaky integrate
and fire (LIF) spiking neurons to train them in an online manner.
However, the FA rule has lower performance compared to the
standard backpropagation rule (Hunsberger, Eric, 2018).

Towards the goal of demonstrating a learning SNN capable
of high accuracy and efficiency, we use the recently proposed
Normalized Approximate Descent (NormAD) algorithm to train
the output layer weights of a three-layered network with fixed
convolutional kernel weights in the hidden layer. This spike-
triggered weight update rule frames the learning task as a su-
pervised optimization problem aimed at tuning the membrane
potential to create spikes at desired time instants. Compared to
other deterministic learning algorithms in the spike domain such
as ReSuMe, at least 10× faster convergence characteristics have
been demonstrated using this algorithm for generating arbitrarily
desired spike streams (Anwani & Rajendran, 2015).

Prior SNN based demonstration of handwritten digit recog-
nition using spiking versions of backpropagation of errors has
achieved 98.7% based on a fully connected 4−layer network and
99.31% with convolutional spiking networks, but also with more
than 4× higher number of trainable synapses compared to our
network (Lee, Delbruck, & Pfeiffer, 2016). The training algorithm
employed in that work has a cost function that is continuous in
time defined in terms of the low pass filtered spike trains (both
input and output). Compared to the state-of-the-art networks
which have shown over 99% accuracy, our SNN trained with Nor-
mAD shows an accuracy of 98.17% on the test set of the MNIST
database, with 4× fewer synaptic learning parameters (Ciregan et
al., 2012; Goodfellow et al., 2013; Lecun et al., 1998; Lee et al.,
2016). Furthermore, if the network architecture and number of
synaptic parameters are kept the same, we show that the accuracy
and performance of theNormAD trained SNN is slightly better than
that of an equivalent ANN trained using backpropagation.

This paper is organized as follows. We introduce the basic units
of SNNs in Section 2. Section 3 describes the architecture of our
network, the spike encoding at the input and output of the net-
work, and the training algorithmused forweight updates. Section 4
describes several hyper-parameter tuning experiments and the
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