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a b s t r a c t

In this paper, the boundedness and robust stability for a class of delayed complex-valued neural networks
with interval parameter uncertainties are investigated. By using Homomorphic mapping theorem, Lya-
punovmethod and inequality techniques, sufficient condition to guarantee the boundedness of networks
and the existence, uniqueness and global robust stability of equilibriumpoint is derived for the considered
uncertain neural networks. The obtained robust stability criterion is expressed in complex-valued LMI,
which can be calculated numerically using YALMIP with solver of SDPT3 in MATLAB. An example with
simulations is supplied to show the applicability and advantages of the acquired result.
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1. Introduction

In the past three decades, neural networks have been paid a
great deal of attention in many engineering areas such as sig-
nal processing, image processing, pattern recognition, associative
memory and optimization (Choi, Ahn, Karimi, & Lim, 2017; Huang,
Li, Duan, & Starzyk, 2012; Zeng& Zheng, 2013). In some of these ap-
plications, it is required that the designed neural networks have a
unique equilibrium point that is globally stable (Sun & Feng, 2003).
When implementing neural networks, time delays are unavoidably
encountered due to finite switching speeds of the amplifiers,which
can significantly affect the stability of networks (Ahn, Shi, & Wu,
2015; Chen & Rong, 2003). Thus, it is necessary to study the stabil-
ity of the delayed neural networks. On the other hand, the stability
may be destroyed by some unavoidable uncertainty caused by the
existence of modeling errors, external disturbance and parameter
fluctuation. As a result, it requires that the designed neural net-
works have robustness (Arik, 2014a). Therefore, robust stability

✩ This work is supported by the National Natural Science Foundation of China
under Grants 61773004 and 61473332, and in part by the Program of Chongqing
Innovation Team Project in University under Grant CXTDX201601022.

* Corresponding author.
E-mail addresses: qiankunsong@163.com (Q. Song), qinqinyucq@163.com

(Q. Yu), zhaozjcn@163.com (Z. Zhao), liuyurong@gmail.com (Y. Liu),
fuad-alsaadi@yahoo.com (F.E. Alsaadi).

analysis of neural networks in the presence of time delays and
parameter uncertainties is an important problem. In the recent lit-
erature, some useful results concerning the existence, uniqueness
and global robust stability of equilibrium point for interval neural
networks with time delays and parameter uncertainties have been
reported, for example, see Arik (2014a), Arik (2014b), Cao, Huang,
and Qu (2005), Cao, Li, and Han (2006), Cao and Wang (2005), Cui,
Zhao, and Guo (2009), Ensari and Arik (2010), Faydasicok and Arik
(2012), Faydasicok and Arik (2013), Ozcan (2011), Ozcan and Arik
(2014), Samli (2015), Samli and Yucel (2015), Shao, Huang, and
Wang (2011), Shao, Huang, and Wang (2012), Shao, Huang, and
Zhou (2010), Singh (2007), Song and Cao (2007), Sun and Feng
(2003), Yuan and Li (2010), Yucel (2015), Zhao and Zhu (2010) and
the references therein. In Ozcan and Arik (2014) and Sun and Feng
(2003), the interval neural networks with constant delays were
considered, and several algebraic inequality criteria were obtained
to ensure global robust stability of unique equilibriumpoint. In Cao
and Wang (2005), a main sufficient condition in matrix norm in-
equality formwas given to ensure global robust stability of unique
equilibriumpoint for interval neural networkswith constant delay.
Further, some criteria in positive (negative) definite matrix form
were provided to guarantee global robust stability of unique equi-
librium point for interval neural networks with constant delay
(Arik, 2014b; Cao et al., 2005, 2006; Cao & Wang, 2005; Ensari
& Arik, 2010; Faydasicok & Arik, 2012, 2013; Rong, 2005; Samli,
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2015; Zhao&Zhu, 2010), or for interval neural networkswith time-
varying delays (Cui et al., 2009; Samli & Yucel, 2015; Shao et al.,
2011, 2012, 2010), where elements of the matrices in criteria are
the norm of connection weight matrices. From these criteria given,
the sign of connection weight matrices in neural networks was
ignored owing to the norm form of connection weight matrices,
which may lead to conservatism. Consequently, it is a meaningful
work to reduce the conservatism of the criteria.

The neural networks mentioned above are called real-valued
neural networks (RVNNs) because the state, activation function,
external input and connection weight of networks are real val-
ues. As a generalization of RVNNs, complex-valued neural net-
works (CVNNs) have been extensively studied in recent years since
CVNNs make it possible to solve some problems which cannot be
solved with their real-valued counterparts. For example, the XOR
problem and the detection of symmetry problem cannot be solved
with a single real-valued neuron, but they can be solved with a
single complex-valued neuron with the orthogonal decision
boundaries, which reveals the potent computational power of
complex-valued neurons (Jankowski, Lozowski, & Zurada, 1996).
And there have been some researches on the stability of various
CVNNs, for example, see Fang and Sun (2014), Hu andWang (2012),
Jankowski et al. (1996); Lee (2001), Liu and Chen (2016), Pan,
Liu, and Xie (2015), Rao and Murthy (2008), Song, Yan, Zhao, and
Liu (2016a), Song, Yan, Zhao, and Liu (2016b), Song, Zhao, and
Liu (2015a), Song, Zhao, and Liu (2015b), Zhang, Li, and Huang
(2014), Zhang, Lin, and Chen (2014), Zhang, Liu, Chen, Guo, and
Zhou (2017) and Zhou and Song (2013). In Jankowski et al. (1996),
a CVNNs was proposed, and the stability of the network was dis-
cussed under the assumption that the weight matrix was Hermi-
tianwith nonnegative diagonal entries. Immediately following, Lee
(2001) weakened the assumption of weight matrix in Jankowski et
al. (1996). In Fang and Sun (2014), Hu and Wang (2012), Liu and
Chen (2016), Zhang, Lin et al. (2014), Zhang et al. (2017) and Zhou
and Song (2013), the researchers investigated the asymptotical
stability and exponential stability of CVNNs with constant delay.
The CVNNs with time-varying delays were considered and some
sufficient conditions for stability of a unique equilibrium were
derived by Pan et al. (2015) and Song et al. (2015a). Rao andMurthy
(2008) and Song et al. (2015b) also studied the stability of discrete-
time CVNNs. Furthermore, impulsive effect on stability of CVNNs
with time delays was considered by Song et al. (2016a, 2016b) and
Tan, Tang, Yang, and Liu (2017).

Recently, the robust stability problem for delayed CVNNs with
parameter uncertainties has been considered. For example, see
Gong, Liang, Zhang, and Cao (2016), Tan et al. (2017), and Zhang, Li,
et al. (2014). In Zhang, Li, et al. (2014), sufficient condition to insure
the existence, uniqueness and global robust stability of equilibrium
point for delayed CVNNs with interval parameter uncertainties
was established under the assumptions that activation functions
can be separated into its real part function and imaginary part
function, and real part function and imaginary part function satisfy
Lipschitz conditions and their partial derivatives are continuous
and bounded. Then, when complex-valued activation functions are
bounded and satisfy Lipschitz continuity condition in the complex
domain, sufficient conditions to ensure the existence and global
robust stability of equilibrium point for delayed CVNNswith inter-
val parameter uncertaintieswere provided. From the given criteria,
the sign of the entries of the connection matrices was not consid-
ered since the obtained sufficient conditionswere expressed by the
norm of the matrix, which may lead to conservatism. In Gong et
al. (2016), based on the nonlinear measure method and the matrix
inequality techniques, the robust stability criterion for CVNNswith
constant delays and parameter uncertainties was obtained under
the assumption that activation functions can be separated into its
real and imaginary parts. As pointed out in Song et al. (2016b),

there are two problemswith this approach of separating activation
functions. One is that the dimension will double increase when
CVNNs are transformed into real-valued systems,which can lead to
the difficulties in analyzing stability. The other is that this approach
needs to explicitly separate the complex-valued activation func-
tions into the real and imaginary parts. In general, this separation
in an analytical form is not always expressible.

Motivated by the above deliberation, the purpose of this paper
is to present a new sufficient condition for the global robust sta-
bility of delayed CVNNs with interval parameter uncertainties. By
giving a numerical example, we will also compare our result with
the previous relevant robust stability results derived in the liter-
ature. The main contributions of this paper are listed as follows.
(1) The considered CVNNs are not separated into their real and
imaginary parts. (2) The established stability criterion depends on
both the lower and upper bounds of intervals for interval param-
eter uncertainties. (3) The sign of the entries of the connection
weight matrices was not ignored.

Notations: Throughout this paper, I represents the unitary ma-
trix with appropriate dimensions; Rn and Cn denote, respectively,
the set of all n-dimensional real-valued vectors and complex-
valued vectors. Rn×m and Cn×m denote, respectively, the set of
all n × m real-valued matrices and complex-valued matrices. A∗

shows the complex conjugate transpose of complex-valuedmatrix
A. λmax(P) and λmin(P) are defined as the largest and the smallest
eigenvalue of Hermitian matrix P , respectively. The subscript T
denotes the matrix transposition. The notation X > Y means that
X and Y are Hermitian matrices, and that X −Y is positive definite.
|a| denotes themodule of complex number a ∈ C, and ∥z∥ denotes
the norm of z ∈ Cn, i.e., ∥z∥ =

√
z∗z. If A ∈ Cn×n, denote by ∥A∥

its norm. For a, b ∈ C, a ⪯ b denotes a1 ≤ b1 and a2 ≤ b2, where
a = a1 + a2i and b = b1 + b2i. For A, B ∈ Cn×n, A ⪯ B if and only if
aij ⪯ bij for i, j = 1, 2, . . . , n, where A = (aij)n×n and B = (bij)n×n.
In addition, the notation ⋆ always denotes the conjugate transpose
of a suitable block in a Hermitian matrix.

2. Model description and preliminaries

In this paper, we consider the following delayed CVNNs with
interval parameter uncertainties

ż(t) = −Cz(t) + Af (z(t)) + Bf (z(t − τ )) + J (1)

for t ≥ 0, where z(t) = (z1(t), z2(t), . . . , zn(t))T ∈ Cn, zi(t)
is the state of the ith neuron at time t; τ corresponds to the
transmission delay; f (z(t)) = (f1(z1(t)), f2(z2(t)), . . . , fn(zn(t)))T ∈

Cn is the vector-valued activation functionwhose elements consist
of complex-valued nonlinear functions; C = diag{c1, c2, . . . , cn} ∈

Rn×n is the self-feedback connection weight matrix, where ci > 0;
A ∈ Cn×n is the connection weight matrix, B ∈ Cn×n is the delayed
connection weight matrix; J ∈ Cn is the input vector. The initial
condition associated with (1) is given by

z(s) = φ(s), s ∈ [−τ , 0], (2)

where φ(s) ∈ Cn is continuous in [−τ , 0].
Throughout this paper, we make the following assumptions:

Assumption 1. For any i ∈ {1, 2, . . . , n}, there exists a positive
diagonal matrix L = diag{l1, l2, . . . , ln} such that

|fi(α1) − fi(α2)| ≤ li|α1 − α2|

for all α1, α2 ∈ C.
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