
Neural Networks 103 (2018) 63–71

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

A nonnegative matrix factorization algorithm based on a
discrete-time projection neural network✩

Hangjun Che, Jun Wang *
Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Hong Kong
Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China

a r t i c l e i n f o

Article history:
Received 13 June 2017
Received in revised form 18 December 2017
Accepted 6 March 2018
Available online 20 March 2018

Keywords:
Nonnegative matrix factorization
Discrete-time projection neural network
Biconvex optimization

a b s t r a c t

This paper presents an algorithm for nonnegative matrix factorization based on a biconvex optimization
formulation. First, a discrete-time projection neural network is introduced. An upper bound of its step size
is derived to guarantee the stability of the neural network. Then, an algorithm is proposed based on the
discrete-time projection neural network and a backtracking step-size adaptation. The proposed algorithm
is proven to be able to reduce the objective function value iteratively until attaining a partial optimum
of the formulated biconvex optimization problem. Experimental results based on various data sets are
presented to substantiate the efficacy of the algorithm.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Non-negative matrix factorization (NMF) aims to decompose a
high-dimensional matrix V ∈ Rm×n

+ into two low-rank matrices
such that V ≈ WH , where W ∈ Rm×r

+ , H ∈ Rr×n
+ and 1 ≤

r < min(m, n) (Lee & Seung, 1999). NMF is regarded as an effec-
tive technique to reduce data dimensions and discover part-based
representations (Arabnejad, Moghaddam, & Cheriet, 2017; Cai, He,
Han, & Huang, 2011; Fan & Wang, 2017; Zhu & Honeine, 2016).

NMF is usually formulated as a constrained optimization prob-
lem as follows:

min f (W ,H)
s.t. W ≥ 0, H ≥ 0,

(1)

where f (W ,H) is an objective function. Two most popular objec-
tive functions are used in problem (1): one is squared Frobenius
norm of the factorization error matrix (Lee & Seung, 1999):

f1(W ,H) =
1
2
∥V − WH∥

2
F , (2)
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where ∥ · ∥F is the Frobenius norm, and the other is the Kullback–
Leibler (K–L) divergence (Lee & Seung, 2001):

f2(W ,H) = D(V ∥ WH)

=

n∑
i=1

m∑
j=1

(Vij log
Vij

(WH)ij
− Vij + (WH)ij).

(3)

In Lee and Seung (2001), anNMFalgorithmcalledmultiplicative
update rule (MUR) is proposed. MUR is simple to implement, but
it may fail to converge to a stationary point or converge slowly
(Lin, 2007). As an alternative, alternating least squares (ALS) is pre-
sentedbasedon alternating least squares (Berry, Browne, Langville,
Pauca, & Plemmons, 2007). However, ALS requires a high compu-
tational cost and the convergence is not guaranteed (Kim & Park,
2008a). To expedite convergence, projected gradient (PG) method
is proposed based on reformulating NMF as two nonnegative least-
squares subproblems (Lin, 2007). Active set (AS) method and block
principal pivoting (BPP) method are presented for NMF in Kim
and Park (2008a, b), respectively. AS and BPP algorithms expedite
convergence, but they suffer from numerical instability if W and
HT are not full column rank (Guan, Tao, Luo, & Yuan, 2012). In Guan
et al. (2012), an NMF algorithm called NeNMF based on Nesterov’s
optimal gradient method with a convergence rate O(1/k2) is pro-
posed. An important factor of NeNMF is the Lipschitz constant, but
it is difficult to compute it if the objective function is complex. In
Cichocki, Zdunek, and Amari (2006), Fvotte, Bertin, and Durrieu
(2009) and Nakano et al. (2010) three general divergence functions
are proposed tomeasure the quality of NMF and the K–L function is
the special case of them. Essentially, the NMF algorithms based on
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the general divergence functions are the variants of MUR (Cichocki
et al., 2006; Fvotte et al., 2009; Nakano et al., 2010).

As a parallel optimization approach, neurodynamic optimiza-
tion shows superior search ability in various optimization prob-
lems such as linear programming (He, Li, Huang, Li, & Huang, 2014;
Liu, Cao, & Chen, 2010; Liu & Wang, 2008), convex programming
(Che, Li, He, & Huang, 2016; Liu &Wang, 2011, 2016; Wang, 1994;
Xia, Feng, & Wang, 2004; Xia & Wang, 2004), nonsmooth convex
optimization (Li, Yan, & Wang, 2014; Liu & Wang, 2013; Qin,
Bian, & Xue, 2013) and constrained nonconvex optimization (Li,
Yan, & Wang, 2015). In recent years, collaborative neurodynamic
optimizationmethod based onmultiple recurrent neural networks
searching for the global optimal solutions cooperatively with the
help of particle swarm optimization is proposed. The collaborative
approach shows superior performance in searching for the global
optima (Che, Li, He, & Huang, 2015; Liu, Yang, & Wang, 2017; Yan,
Fan, & Wang, 2017; Yan, Wang, & Li, 2014).

In view of the powerful computing ability of neural networks,
this paper presents an NMF algorithm based on a discrete-time
projection neural network. Theoretical and experimental results
show the efficacy of the algorithm.

The remainder of this paper is organized as follows. In Section 2,
continuous-time projection neural network and basic concepts of
biconvex optimization are introduced. A discrete-time projection
neural network (DTPNN) is developed and analyzed in Section 3.
An algorithm for NMF based on DTPNN is proposed in Section 4.
Experimental results are discussed in Section 5. Conclusions are
given in Section 6.

2. Preliminaries

2.1. Continuous-time projection neural network

Consider the following optimization problem:

min f (x) s.t. l ≤ x ≤ u. (4)

A one-layer projection neural network can be used to solve (4) (Xia
& Wang, 2000):

ϵ
dx
dt

= −x + g(x − ∇f (x)) (5)

where ϵ > 0 is a time constant,∇f (x) denotes the gradient of f and
g(·) is a piecewise activation function defined as follows:

g(ζi) =

{li, ζi < li
ζi, li ≤ ζi ≤ ui
ui, ζi > ui.

In particular for NMF, ui is ∞ and li is 0. Therefore, g(·) is the
activation function called rectified linear unit defined as follows:

g(ζi) =

{
0, ζi < 0
ζi, ζi ≥ 0. (6)

The following lemma shows the property of the continuous-
time projection neural network (5).

Lemma 1 (Hu & Wang, 2006). If f (x) is pseudoconvex and twice
continuously differentiable on the closed convex set Ω , then the
projection neural network (5) is stable in the sense of Lyapunov and
globally convergent to the optimal solution of (4).

2.2. Biconvex optimization

Definition 1. The set B ⊂ X × Y is called biconvex set on X × Y ,
if Bx is convex for every x ∈ X and By is convex for every y ∈ Y ,

where X ⊆ Rn and Y ⊆ Rm are two non-empty convex sets. Bx and
By are two sections of B defined as follows:

Bx = {(x, y) ∈ B|y ∈ Y},By = {(x, y) ∈ B|x ∈ X }.

Definition 2. A function f (x, y): B → R is called a biconvex
function on B ⊆ X × Y , if f (x, ·) : Bx → R is a convex function on
Bx for every fixed x ∈ X and f (·, y) : By → R is a convex function
on By for every fixed y ∈ Y .

Definition 3. A biconvex optimization problem is defined as fol-
lows:

min f (x, y) s.t. (x, y) ∈ B, (7)

where the feasible set B is biconvex on X × Y , and f (x, y) is a
biconvex function on B. In this paper, we assume that f (x, y) is
twice differentiable on B.

Definition 4. Let f : B → R be a given function and (x∗, y∗) ∈

Rn
× Rm, (x∗, y∗) is called a partial optimum of f on B, if
f (x∗, y∗) ≤ f (x, y∗) ∀x ∈ By∗ and f (x∗, y∗) ≤ f (x∗, y) ∀y ∈ Bx∗ .

Definition 5. Let f : Rn
→ R be a given function and ξ ∈ Rn. If

the partial derivatives of f at ξ exist and ∇f (ξ ) = 0, ξ is called a
stationary point of f .

Lemma 2 (Gorski, Pfeuffer, & Klamroth, 2007). Let f : B → R be
partial differentiable at z∗

∈ int(B) and let z∗ be a partial optimum.
z∗ is a stationary point of f in B.

Lemma 3 (Gorski et al., 2007). Let B be a biconvex set and f : B → R
is a differentiable biconvex function. Each stationary point of f is a
partial optimum.

In problem (1), feasible region is a biconvex set, to show this is a
biconvex optimization problem, we need to prove the biconvexity
of f1(W ,H) and f2(W ,H). In Guan et al. (2012), f1(W ,H) is proven
to be biconvex, here we prove the biconvexity of f2(W ,H).

Lemma 4. f2(W ,H) is biconvex.

Proof. The K–L divergence objective function for nonnegative
matrix factorization is as follows:

f =

∑
i

∑
j

(vijloga
vij

(WH)ij
− vij + (WH)ij)

V ∈ Rm×n
+

, W ∈ Rm×r
+

, H ∈ Rr×n
+

.

(8)

where vij is in the ith row and jth column of V , (WH)ij is in the ith
rowand jth columnofmatrixWH , r ≪ min(m, n), a > 0 and a ̸= 1.
W and H are defined as follows:

W = [wT
1 , . . . , w

T
i , . . . , w

T
m]

T , wi ∈ Rr , i = 1, . . . ,m
H = [h1, . . . , hj, . . . , hn], hj ∈ Rr , j = 1, . . . , n.

(9)

Consider the corresponding objective function of vij, let wT
i be a

constant vector, hj is a variable vector, so

fij = vijloga
vij

wT
i hj

− vij + wT
i hj

= vij(loga(vij) − loga(wT
i hj) − vij + wT

i hj).
(10)

The partial derivative of hj is

dfij
dhj

= −
vij

ln a
wi

wT
i hj

+ wi (11)



Download English Version:

https://daneshyari.com/en/article/6862983

Download Persian Version:

https://daneshyari.com/article/6862983

Daneshyari.com

https://daneshyari.com/en/article/6862983
https://daneshyari.com/article/6862983
https://daneshyari.com

