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a b s t r a c t

Fractional order system is playing an increasingly important role in terms of both theory and applications.
In this paper we investigate the global existence of Filippov solutions and the robust generalized Mittag-
Leffler synchronization of fractional order neural networks with discontinuous activation and impulses.
By means of growth conditions, differential inclusions and generalized Gronwall inequality, a sufficient
condition for the existence of Filippov solution is obtained. Then, sufficient criteria are given for the robust
generalized Mittag-Leffler synchronization between discontinuous activation function of impulsive frac-
tional order neural network systems with (or without) parameter uncertainties, via a delayed feedback
controller and M-Matrix theory. Finally, four numerical simulations demonstrate the effectiveness of our
main results.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, fractional order dynamical system has aroused
interest of many researchers in the field of nonlinear science and
technology. Fractional-order calculus, which generalized the clas-
sical calculus developed in the 17th century (Kilbas, Srivastava,
& Trujillo, 2006; Podlubny, 1999). Fractional calculus investigates
primarily the properties of derivatives and integrals of non-integer
order. In particular, the differential equations involving fractional
derivatives have important geometric interpretations. For this rea-
son, fractional calculus is currently a rapidly growing field, in terms
of both theory and applications to real world problem. More pre-
cisely, fractional calculus has been applied in various branches of
science and engineering, including electromagnetic waves (Heavi-
side, 1971) and bioengineering (Magin & Ovadia, 2008). Compared
to integer order calculus, fractional order one has infinite memory
and more degrees of freedom (Chen, Jiao, Wu, & Wang, 2010;
Chen, Ye, & Sun, 2010). Moreover, fractional order is also said
to be ‘‘more authentic’’ (Hilfer, 2000). Nowadays, the dynamical
system of synchronization or stability of fractional order neural
networks was found to play an important role in applications, such
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as information theory, pattern recognition, cryptography or secure
communication (Li & Cao, 2017a; Milanovic & Zaghloul, 1996; Ren,
Cao, & Cao, 2015; Song & Cao, 2014; Yang et al., 2012).

Since the formulation of drive–response synchronization con-
cept in 1990s by Carroll and Pecora, which means dynamical
behaviors of a coupled system that realizes convergence to the
matching spatial state, has become an important research topic in
various areas. Still now, there are numerous types of synchroniza-
tion concepts known in the literature, including complete synchro-
nization (Ding, Shen, & Wang, 2016; Lu, Wang, Cao, Ho & Kurths,
2012; Yang & Cao, 2014), anti-synchronization (El-Dessoky, 2010),
lag synchronization (Zhang, Lv, & Li, 2017), phase synchronization
(Rosenblum, Pikovsky, & Kurths, 1996) and others. However, few
practical network systems can be synchronized directly. To address
this problem, several control schemes have been introduced, such
as feedback control (Cao & Li, 2017; Li, Cao, Alsaedi, & Alsaadi,
2017; Li, Zhang, & Song, 2017), linear feedback control (Xiao,
Zhong, Li, & Xu, 2016), observer based control (Jiang, Tang, & Chen,
2006) and impulsive control (Li & Song, 2017; Yang & Cao, 2007).

Generally, time delay of the signal between the driver and
response system is unavoidable because of the network traffic con-
gestion aswell as finite switching speed of signal transmission over
the links, which may lead to instability, chaos, oscillation or other
performance of network models (Li, Cao et al., 2017; Li, Zhang et
al., 2017). Moreover, time delays are more complicated compared
to other networks (Chen, Chai,Wu, &Ma, 2013; Li &Wu, 2016; Zhu
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& Cao, 2011). Impulses, i.e., abrupt changes in state at certain times
also affect the stability of the systems (Li, Bohner, & Wang, 2015;
Li & Cao, 2017b; Li, Cao et al., 2017; Li, Zhang et al., 2017; Stamova,
Stamov, & Li, 2014). Generally, impulsive systems belong to two
major types: first is the constant impulsive system, while the other
one is time varying impulsive system. Due to measurement errors,
parameter fluctuations as well as external disturbance, parameter
uncertainty is unavoidable, which has important effects on the
stability and synchronization capability ofmost real world dynam-
ical systems. Additionally, the main application of this dynamical
problem is used to secure communication, only if the drive and re-
sponse systems realize synchronization can the transmitted signal
be fingered out. Therefore, it is necessary to study fractional order
complete synchronization of neural networks with discontinuous
activations. Firstly, the global convergence of general neural net-
works with discontinuous activations were considered in Forti and
Nistri (2003), while Forti, Nistri, and Papini (2005) discussed the
infinite gain of neural discontinuous activations. Besides, these
activations are mainly applied to systems oscillating under earth-
quake, dry friction, power circuits and so on. Several results with
respect to synchronization of discontinuous neural networks have
been reported in the literature (Liu & Cao, 2009; Liu, Liu, & Xie,
2012; Liu, Park, Jiang, & Cao, 2014; Lu & Chen, 2005). On the other
hand, Wang, Shen, and Sheng (2016), some parameter uncertain
models of integer order delayed neural networks with discontinu-
ous activations are discussed, while Ding et al. (2016) investigated
Mittag-Leffler synchronization of neural networks with discon-
tinuous activation functions by using M-matrix theory and non
smooth analysis. However, there are few results of synchronization
of fractional neural networkswith discontinuous activation. To our
best of knowledge, there are no results published in robust gen-
eralized Mittag-Leffler synchronization of delayed neural network
systems (GMSDNNs) with (or without) parameter uncertainties.
This model is more general and can be extended beyond the study
of integer order discontinuous dynamical systems.

Inspired by the above analysis and discussions, our main aim
in this paper, is to study the generalized Mittag-Leffler synchro-
nization of delayed fractional order neural networks(GMSDNNs)
with discontinuous activations. The crucial novelty of this paper
is further summarized as follows:

• In the sense of Caputo fractional order derivative of 0 < α <

1, based on the growth condition and non smooth analysis,
we have proved the global existence of Filippov solution.

• A delayed feedback controller is designed which includes
the constant time delay terms and discontinuous term.

• By means of M-matrix theory, Lyapunov stability theory
and proposed discontinuous control scheme, the algebraic
sufficient condition for generalized Mittag-Leffler synchro-
nization is addressed, and we improved the fractional order
continuous activation synchronization methods. Moreover,
an important feature presents in our paper is that the im-
proved result is still true for integer order robust expo-
nential synchronization of delayed neural networks with
discontinuous (continuous) activations with impulses.

The rest of the paper is organized as follows. In Section 2,
some basic definitions and preliminaries are given including the
problem formulation are introduced. In Section 3, the existence
of Filippov solution is provided and derived the sufficient criteria
for the robust generalized Mittag-Leffler synchronization between
drive and response neural network systems. Section 4 considers
the four numerical examples to validate the theoretical obtained
results, conclusions are drawn in Section 5.

2. Model description and preliminaries

Notations: Throughout this paper,R is the space of real number,
N+ is the set of positive integers and C is the space of complex
numbers. For a vector x ∈ Rn, we shall use the norm ∥x∥ =

∥.∥1 =
∑n

i=1|xi|. The signum function applied for a vector sgn(x) =

[sgn(x1), sgn(x2), . . ., sgn(xn)]T is given by

sgn(x) =

{ 1, x > 0
0, x = 0

−1, x < 0.

Also, Rn×n denotes the set of all n × n real matrices. For a square
matrix A = (aij)n×n ∈ Rn×n, we consider the absolute value given
by the formula |A| = (|aij|)n×n ∈ Rn×n. In addition Cn([t0, +∞),R)
denotes the space consisting of n-order continuous differentiable
functions from [t0, +∞) into R.

For our further presentation and convenience, we set the fol-
lowing notations:

D = diag(d1, d2, . . . , dn), âij = max{|aij|, |āij|},

b̂ij = max{|bij|, |b̄ij|},
K1 = diag(κ1,1, κ1,2, . . . , κ1,n), K2 = diag(κ2,1, κ2,2, . . . , κ2,n),
K3 = diag(κ3,1, κ3,2, . . . , κ3,n),

E1 = (âijpj)n×n, E2 =

(
(âij + b̂ij)pj

)
n×n

, E3 = (|aij|pj)n×n,

E4 =

(
(|aij| + |bij|)pj

)
n×n

,

F1 = diag
{ n∑

j=1

b̂1jpj,
n∑

j=1

b̂2jpj, . . . ,
n∑

j=1

b̂njpj
}
,

F2 = diag
{ n∑

j=1

(â1j + b̂1j)qj,
n∑

j=1

(â2j + b̂2j)qj, . . . ,

n∑
j=1

(ânj + b̂nj)qj
}
,

F3 = diag
{ n∑

j=1

â1jqj,
n∑

j=1

â2jqj, . . . ,
n∑

j=1

ânjqj
}
,

M1 = diag
{ n∑

j=1

|b1j|pj,
n∑

j=1

|b2j|pj, . . .
n∑

j=1

|bnj|pj
}
,

M2 = diag
{ n∑

j=1

(|a1j| + |b1j|)qj,
n∑

j=1

(|a2j| + |b2j|)qj, . . . ,

n∑
j=1

(|anj| + |bnj|)qj
}
.

In this section we recalled some key definitions, assumption and
some basic lemmas.

Definition 2.1 (Kilbas, Srivastava, & Trujillo, 2006&Podlubny, 1999).
The Caputo fractional-order derivative of order α for a function
x(t)∈ Cn([t0, +∞)) is defined as

Dαx(t) =
1

Γ (n − α)

∫ t

t0

xn(s)
(t − s)α−n+1 ds,

where t ≥ t0 and n is the positive integer such that n−1 < α < n.
Particularly, when 0 < α < 1,

Dαx(t) =
1

Γ (1 − α)

∫ t

t0

x′(s)
(t − s)α

ds.
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