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a b s t r a c t

Least square regression is a very popular supervised classification method. However, two main issues
greatly limit its performance. The first one is that it only focuses on fitting the input features to the
corresponding output labels while ignoring the correlations among samples. The second one is that
the used label matrix, i.e., zero–one label matrix is inappropriate for classification. To solve these
problems and improve the performance, this paper presents a novel method, i.e., inter-class sparsity
baseddiscriminative least square regression (ICS_DLSR), formulti-class classification. Different fromother
methods, the proposed method pursues that the transformed samples have a common sparsity structure
in each class. For this goal, an inter-class sparsity constraint is introduced to the least square regression
model such that the margins of samples from the same class can be greatly reduced while those of
samples from different classes can be enlarged. In addition, an error term with row-sparsity constraint
is introduced to relax the strict zero–one label matrix, which allows the method to be more flexible in
learning the discriminative transformation matrix. These factors encourage the method to learn a more
compact and discriminative transformation for regression and thus has the potential to perform better
than other methods. Extensive experimental results show that the proposed method achieves the best
performance in comparison with other methods for multi-class classification.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Least squares regression (LSR) has been proved to be an ef-
fective technique in the community of pattern classification and
computer vision, such as face recognition (Xu et al., 2014), mi-
croarray gene classification (Li &Ngom, 2013), cancer classification
(Guyon, Weston, Barnhill, & Vapnik, 2002), speech recognition
(Kim & Gales, 2011), and image retrieval (Feng, Zhou, & Lan, 2016).
LSR aims at learning a transformation to connect the source data
and target data with the minimum regression errors. In the past
decades, various LSR based methods have been proposed, such as
partial LSR (Abdi, 2010), local LSR (Ruppert, Sheather, & Wand,
1995), locally weighted LSR (Ruppert & Wand, 1994), kernel LSR
(Gao, Shi, & Liu, 2007), and support vector machine (SVM) (Chang
& Lin, 2011; Cherkassky & Ma, 2004). Besides, some representa-
tion based classification methods, such as linear regression based
classification (LRC) (Naseem, Togneri, & Bennamoun, 2010) and
sparsity representation based classification (SRC) (Wright, Yang,
Ganesh, Sastry, & Ma, 2009), can be also regarded as the LSR
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based methods since they use the LSR technique to learn the
representation coefficient for classification. Moreover, the very
popular subspace learning methods, such as principle component
analysis (PCA) , linear discriminant analysis (LDA), locality pre-
serving projections (LPP), and spectral clustering (SC) can be also
extended to the LSR framework (Cai, He, & Han, 2007; De la Torre,
2012; Tibshirani, 2011; Wang & Gao, 2015; Wen et al., 2018; Ye,
2007; Zou, Hastie, & Tibshirani, 2006). Compared with the con-
ventional subspace learning methods, the LSR-type methods are
more favorable since it is flexible to introduce various meaningful
regularizations to improve their interpretability andperformances.
Moreover, the LSR-type methods can overcome the small-sample-
size problem and greatly improve the computational efficiency
(Fang, Xu, Li, Lai, Teng et al., 2017; Tibshirani, 2011).

Linear regression (LR) is one of the most popular supervised
LSR methods. It has been applied in various classification tasks
owing to its good performance and computational efficiency. For
multi-class classification tasks, the standard LR first defines a label
matrix according to the class labels and then seeks for a trans-
formation matrix that can perfectly transform the samples into
their corresponding labels. Under amild condition, LR is equivalent
to the well-known discriminative feature extraction method, i.e.,
LDA, for multi-class classification (Ye, 2007). LDA seeks for a linear
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projection that can pull the samples of same class together and
push the samples of different classes far away in the discriminative
subspace (Li, Chen, Nie, & Wang, 2017; Wang, Meng, & Li, 2017).
Compared with LDA, LR is more flexible and efficient. For example,
the sparsity techniques, such as the lasso constraint (l1 norm)
and row-sparsity constraint (l2,1 norm) can be simply introduced
into the model of LR to improve the interpretability and effective-
ness. Introducing the sparsity technique also allows the learned
transformation matrix to select the most discriminative features
for classification, which is beneficial to improve the performance
(Tibshirani, 2011; Xiang, Nie, Meng, Pan, & Zhang, 2012).

However, many issues still exist in the above LR basedmethods.
The first issue is that the target matrix, i.e., zero–one label matrix,
is inappropriate for classification (Cai, Ding, Nie, & Huang, 2013;
Wang & Pan, 2017; Xiang, Nie et al., 2012; Zhang, Lai et al., 2017;
Zhang, Wang, Xiang, & Liu, 2015). For the strict zero–one label
matrix, the Euclidean distances of regression responses between
samples from different classes are a constant value, i.e.,

√
2. This

is contrary to the expectation that samples from different classes
should be as far as possible after transformation. The second issue
is that these LR based methods only focus on fitting the samples to
the corresponding labels while ignoring the relationships among
samples, which may destroy the underlying structure of data and
lead to the overfitting problem (Argyriou, Evgeniou, & Pontil, 2008;
Bunea, She, & Wegkamp, 2011; Cai, Ding et al., 2013; Xiang, Zhu,
Shen, & Ye, 2012). To solve these problems, many methods have
been developed. For example, many researchers proposed to per-
form the regression on the relaxed label matrix rather than the
strict zero–one matrix, in which the most representative works
are the discriminative LSR (DLSR) (Xiang, Nie et al., 2012), margin
scalable discriminative LSR (MSDLSR) (Wang, Zhang, & Pan, 2016),
and retargeted LSR (ReLSR) (Zhang et al., 2015). DLSR introduces
the ε-dragging technique to enlarge the distances of regression
targets of different classes (Xiang, Nie et al., 2012). Based on DLSR,
MSDLSR further imposes a l1 norm constraint on the dragging
matrix to explicitly control the margin of DLSR (Wang et al., 2016).
Different from DLSR and MSDLSR, ReLSR does not use ε-dragging
technique to relax the label matrix. It directly leans the regression
targets from thedata by introducing amargin constraint,where the
margin between the true and false targets are enforced to be larger
than one (Zhang et al., 2015). To emphasize the correlations among
samples, the graph regularization term is introduced to the LR,
which allows to learn a more compact representations and avoids
the overfitting problem (Fang, Xu, Li, Lai, Wong et al., 2017; Xue,
Chen, & Yang, 2009). Some researchers also proposed the low-rank
linear regression (LRLR) models, in which the rank constraint, i.e.,
nuclear norm, is imposed on the transformation matrix to explore
the correlations among samples (Argyriou et al., 2008; Bunea et al.,
2011; Cai, Ding et al., 2013; Xiang, Zhu et al., 2012).

Both the techniques mentioned above are useful and have the
potential to improve the classification performance. However, re-
laxing the label matrix by introducing the ε-dragging technique
or margin constraint will also enlarge the distances of the regres-
sion responses between samples from the same class, which is
harmful to the classification. In this paper, a new relaxed label
regressionmethodnamed inter-class sparsity baseddiscriminative
least square regression (ICS_DLSR) is proposed to learn a more
discriminative transformation. Different from the above methods,
ICS_DLSR aims to preserve the row-sparsity consistency property
of samples from the same class such that the distances of regres-
sion responses between samples from the same class can be greatly
reduced, and thus can obtain a better performance. To this end,
a novel inter-class sparsity regularization term is imposed on the
transformation. Meanwhile, a sparsity error term with l2,1 norm is
introduced to the LSR model to relax the strict target label matrix
for regression. Several experimental results show that ICS_DLSR

can greatly improve the classification accuracies in comparison
with the state-of-the-art methods. In brief, the proposed method
has the following properties.

(1) The inter-class sparsity constraint is for the first time inte-
grated into the LSR to exploit the relationships among samples. In
particular, ICS_DLSR can learn a more compact and discriminative
transformation that allows the transformed samples to have a
common structure in each class.

(2) ICS_DLSR introduces a sparsity error term with l2,1 norm
to compensate the regression errors, which is beneficial to learn
a more flexible transformation.

The rest of the paper is organized as follows. Section 2 intro-
duces some notations and related works. In Section 3, the for-
mulation and the optimal solution of the proposed method are
presented. Then we analyze the proposed method in Section 4.
Some experiments are conducted in Section 5 to prove the effec-
tiveness of the proposed method. Section 6 offers the conclusion.

2. Related work

This section briefly introduces some related linear regression
methods. For convenience, we first introduce some notations
which are used throughout the paper. Let X = [x1, x2, . . . , xn] ∈

Rm×n be the training set with n training samples from c classes,
where m is the feature dimension of each sample. We use Xi ∈

Rm×ni and ni to denote the sub-training set and the number of sam-
ples of the ith class, respectively. For a vector z = [z1, z2, . . . , zn],
its l2 norm is calculated as ∥z∥2 =

√∑n
i=1z

2
i . For a matrix

W ∈ Rc×m, its l1-norm, l2,1-norm, and ‘Frobenius’ norm (lF -
norm) are calculated as ∥W∥1 =

∑c
j=1

∑m
i=1

⏐⏐Wij
⏐⏐, ∥W∥2,1 =∑c

i=1

√∑m
j=1W

2
ij , ∥W∥

2
F =

∑c
i=1

∑m
j=1W

2
ij , respectively. Wi,j de-

notes the (i, j)th element of matrix W . W−1 denotes the inverse
matrix of matrixW .W T is the transposed matrix of matrixW . We
use a zero–one matrix Y = [y1, y2, . . . , yn] ∈ Rc×n to represent
the label matrix corresponding to the training set X , where each
column vector yi ∈ Rc×1 is simply defined as follows: if training
sample xi comes from the kth class, then the kth element of column
vector yi is 1 while the remaining elements are 0. I is the identity
matrix. Note that, the matrix based features such as image are
pre-transformed into the column vector by stacking the matrix
columns.

2.1. Standard LR (StLR) and low-rank LR (LRLR)

Given a training set X ∈ Rm×n and the corresponding label
matrix Y ∈ Rc×n, StLR aims at jointly learning a projection that
canwell transform the given training samples into their respective
class labels as follows:

min
Q

∥Y − QX∥
2
F + λ ∥Q∥

2
F (1)

where Q ∈ Rc×m is the transformation matrix, λ is the regular-
ization parameter with a small positive value. Problem (1) can be
easily solved and has a closed solution as Q = YXT

(
XXT

+ λI
)−1.

For a test sample z, StLR predicts its label as k = argmaxi(Qz)i,
where (Qz)i denotes the ith element of vector Qz.

To exploit the correlations reside in the high-dimensional data,
LRLR replaces the lF -norm regularization term with a low-rank
constraint as follows:

min
Q

∥Y − QX∥
2
F + λ ∥Q∥∗ (2)

where ∥Q∥∗ denotes the nuclear norm (trace norm) of matrix Q
and is calculated as the sum of all singular values of matrix Q (Cai,
Ding et al., 2013; Zhang, Lai et al., 2017). Compared with StLR,
LRLR can discover the low-rank structures of data such that a more
discriminative and compact transformation can be learned, and
thus has the potential to obtain a better performance.
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