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a b s t r a c t

This paper is concerned with the globally exponential stability problem for a class of discrete-time
stochastic memristive neural networks (DSMNNs) with both leakage delays as well as probabilistic
time-varying delays. For the probabilistic delays, a sequence of Bernoulli distributed random variables
is utilized to determine within which intervals the time-varying delays fall at certain time instant.
The sector-bounded activation function is considered in the addressed DSMNN. By taking into account
the state-dependent characteristics of the network parameters and choosing an appropriate Lyapunov–
Krasovskii functional, some sufficient conditions are established under which the underlying DSMNN is
globally exponentially stable in the mean square. The derived conditions are made dependent on both
the leakage and the probabilistic delays, and are therefore less conservative than the traditional delay-
independent criteria. A simulation example is given to show the effectiveness of the proposed stability
criterion.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

For decades, it has been generally recognized that the recur-
rent neural networks (RNNs) are capable of self-organizing, self-
learning, nonlinear function approximation and fault tolerance. In
fact, RNNs have been successfully applied in a variety of practical
domains which include, but are not limited to, signal processing,
control engineering, pattern recognition, image processing and
combinatorial optimization. These applications are heavily depen-
dent on the dynamic behaviors of the RNNs. In fact, the dynamics
analysis problem for RNNs has been a hot topic of research receiv-
ing an ever-increasing research interest and a greatmany excellent
results have been reported in the literature, see e.g. Liang, Gong,
and Huang (2016), Liu, Wang, and Liu (2006), Liu, Wang, and Liu
(2008), Shen, Wang, and Qiao (2017), Wang, Liu, and Liu (2005),
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Zhang, He, Jiang, Lin, and Wu (2017), Zhang, Tang, Wong, and
Miao (2015) and the references therein. In particular, the global
stability of RNNs is arguably the most desirable dynamic property
that attracts a great deal of research attention and plays a vitally
important role in practice such as optimization problems (Zhang,
Wang, & Liu, 2014).

Since the first announcement from the HP Lab on the experi-
mental prototyping of memristor, memristive devices have been
widely investigated for their potential applications in non-volatile
memories, logic devices, neuromorphic devices, and neuromor-
phic self-organized computation and learning, see Adamatzky and
Chua (2013) and Strukov, Snider, Stewart, and Williams (2008)
for more details. On the other hand, it is well known that NNs
can be implemented by very large-scale integration and, in the
implementation of NNs, it is natural to replace the resistors by the
memristors in order to exploit the aforementioned advantages of
memristors, and this gives rise to a new kind of neural networks,
namely, memristive neural networks (MNNs). Actually, in the past
few years, such MNNs have already been used in some application
areas such as brain emulation, combinatorial optimization and
knowledge acquisition, see e.g. Pedretti et al. (2017) and Pershin
and Di Ventra (2010), where the dynamical behaviors (especially
the global stability) of the MNNs form a critically important in the
successes of the MNN applications. In this regard, along with the
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development/deployment of the MNNs, much research has been
done on the stability analysis issues of MNNs and a number of
excellent results have been available, see Wang, Ding, Huang, and
Zhang (2016), Wang, Duan, Huang, Li, and Wang (2016), Wu and
Zeng (2014) and Wu and Zeng (2017) for some recent results. For
example, in Wang, Duan et al. (2016), some sufficient conditions
have been established to guarantee the exponential stability of the
MNNs with impulse effects. In Wu and Zeng (2014), the problem
of Lagrange stability has been studied for MNNs with mixed time-
delays by utilizing a nonsmooth analysis approach.

It is worth noticing that, up to now, most existing results con-
cerning the stability analysis problem for MNNs have focused on
the continuous-time and/or deterministic neural networks. Never-
theless, as is well known, in today’s digital world, almost all signals
are digitalized before and after being transmitted for the purpose
of computer processing, and therefore signals in a discrete-time
form are more practical than their continuous-time counterparts
in simulating and applications ofMNNs. Another factor that should
be taken into account when modeling MNNs is the stochastic
effects resulting from various causes such as the random synaptic
transmissions released from the neurotransmitters in real nervous
systems (Zhang, Xu, Zong, & Zou, 2009). As such, both discretiza-
tion and stochasticity contribute much to the complexities of the
dynamics analysis forMNNs (Han, Liu, & Yang, 2016), but the corre-
sponding research on these two aspects is still in their infancy stage
despite a great many results on discrete-time stochastic NNs (Liu
et al., 2008), which is mainly due to the essential difficulties in
handling the state-dependent-switching behaviors of MNNs.

Indeed, from the systems’ perspective, a memristive neural
network can be viewed as a state-dependent switching network
(Wu & Zeng, 2014). So far, the stability problem has been exten-
sively investigated for continuous-time MNNs and the frequently
employed techniques are the Filippov differential equation with
discontinuous right-hand side as well as the set-valued maps the-
ory. A large number of results have been available on the estab-
lishment of various stability criteria for continuous-time MNNs
with or without time-delays, see e.g. Wang, Duan et al. (2016), Wu
and Zeng (2014) and Wu and Zeng (2017). Unfortunately, those
techniques used to analyze continuous-time MNNs cannot be di-
rectly borrowed to deal with the discrete-time cases, and there is
a lack of effective methods for handling the stochasticity. To this
end, there are both theoretical and practical needs to examine the
stability problem for discrete-time stochastic MNNs, which appears
to be challenging because of themathematical difficulties in coping
with the state-dependent switches coupled with the discrete and
stochastic fashions.

Time-delays are commonly encountered in the implementation
of neural networks due to the finite speed of the transmission and
switching of signals in a realistic biological system. It is now well
recognized that time-delays are likely to be the sources of poor sys-
tem performance including instability and oscillation. Ever since
the introduction in Marcus and Westervelt (1989), delayed neural
networks have been widely investigated and stability conditions
have been attained in the literature by using a variety of techniques
including descriptor model transformation approach (Fridman,
2001), integral inequality technique (Kwon, Park, Lee, Park, & Cha,
2013), matrix inequality technique (Song, Yan, Zhao, & Liu, 2016;
Zhang & Han, 2014) and so on. In the context of MNNs, the afore-
mentioned methods in combination with the set-valued mapping
theory have been exploited to deal with the stability analysis of
MNNswith time-delays (Wang, Duan et al., 2016;Wu&Zeng, 2014,
2017).

In spite of the considerable interest in the time-delays for RNNs,
there are two classes of time-delays, namely, leakage and prob-
abilistic delays, which have been relatively unexplored. On one
hand, leakage delays are often encountered in the stabilizing neg-
ative feedback terms and, if not adequately handled, they would

probably cause undesired dynamical behaviors or even destabilize
the neural networks, see Chen, Fu, Liu, and Alsaadi (2017) and
the references therein. On the other hand, the presence of time
delay in neural networks might be randomly occurring duemainly
to the random fluctuations of the synaptic voltage and temporal
signals from transmitter release (Yue, Tian, Zhang, & Peng, 2009)
and, therefore, a series of results have been reported on RNNs
with probabilistic time-varying delays, see Sheng, Wang, Tian, and
Alsaadi (2016), Song, Zhao, and Liu (2015), Yue et al. (2009) and
the references therein. However, so far, the stability problem for
discrete-time stochastic MNNs has not been thoroughly investi-
gated yet, not to mention the case when theMNNs are also subject
to both the leakage delay and the probabilistic time-varying delays.

Motivated by the above discussions, in this paper, we aim to
deal with the exponential stability problem for DSMNNswith both
leakage and probabilistic delays. It is worth noting that the Filip-
pov differential approach and set-valued maps theory, which are
effective in handling dynamics analysis issues for continuous-time
MNNs, are no longer working for the DSMNNs to be addressed,
and it is therefore necessary to develop new model/techniques.
We first propose a new yet comprehensive model to account for
the state-dependent behaviors of the network parameters in the
discrete-time setting, and then employ an appropriate Lyapunov–
Krasovskii functional to reflect the impacts from the leakage delay
and the random characteristics of time-varying delays. Some con-
ditions for the exponential stability of the addressed DSMNNs are
obtained that have dependences on both the leakage and proba-
bilistic delays in terms of their intensity and distribution laws. A
simulation example is finally provided to show the usefulness and
effectiveness of developed theoretical results.

The main contributions of this paper are highlighted as fol-
lows: (1) a new yet general memristive neural network model,
namely, discrete-time stochastic delayed MNN, is proposed in order
to reflect the engineering practice; (2) the leakage and probabilistic
delays are, for the first time, handled simultaneously in DSMMNs
by choosing an appropriate Lyapunov–Krasovskii functional; and
(3) delay-dependent conditions for exponential stability of the ad-
dressed DSMNN are obtained by employing up-to-date dynamics
analysis techniques.

Notation. The notation used here is fairly standard except
where otherwise stated. Rn and Rn×m denote, respectively, the n-
dimensional Euclidean space and the set of all n×m realmatrices. I
denotes the identitymatrix of compatible dimension. The notation
X ≥ Y (respectively, X > Y ), where X and Y are system symmetric
matrices, means that X − Y is positive semi-definite (respectively,
positive definite). For a matrix A, AT represents the transpose of
A, λmin{A} (λmax{A}) denote the smallest (largest) eigenvalue of
A. diag{· · · } stands for a block-diagonal matrix. E{x} stands for
the expectation of the stochastic variable x. ∥x∥ describes the
Euclidean norm of a vector x. Matrices, if they are not explicitly
specified, are assumed to have compatible dimensions. Sometimes,
the arguments of a function will be omitted in the analysis when
no confusion can arise.

2. Problem formulation

Consider the followingDSMNNwith constant leakage delay and
probabilistic time-varying delays:

x(k + 1) = D(x(k))x(k − ℓ) + A(x(k))f (x(k))
+ B(x(k))g(x(k − τ (k)))
+ σ (k, x(k), x(k − τ (k)))w(k)

(1)

where x(k) =
[
x1(k) x2(k) · · · xn(k)

]T is the neuron state vec-
tor; D(x(k)) = diag{d1(x1(k)), d2(x2(k)), . . . , dn(xn(k))} is the self-
feedbackmatrixwith entries di(xi(k)) > 0; A(x(k)) =

(
aij(xi(k))

)
n×n
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