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a b s t r a c t

Learning curves of simple perceptron were derived here. The learning curve of the perceptron learning
with noisy teacher was shown to be non-monotonic, which has never appeared even though the learning
curves have been analyzed for half a century. In this paper, we showed how this phenomenon occurs by
analyzing the asymptotic property of the perceptron learning using a method in systems science, that is,
calculating the eigenvalues of the system matrix and the corresponding eigenvectors. We also analyzed
the AdaTron learning and the Hebbian learning in the same way and found that the learning curve of the
AdaTron learning is non-monotonic whereas that of the Hebbian learning is monotonic.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Statistical mechanical methods can apply to problems in infor-
mation science such as neural networks (Nishimori, 2001), com-
munication theory (Tanaka, 2002), and adaptive filters (Miyoshi
& Kajikawa, 2013). One successful application is the analyses of
the perceptron learning algorithm (Biehl & Schwarze, 1992; Rosen-
blatt, 1961) and its variations (Hara & Okada, 2004; Inoue & Nishi-
mori, 1997;Miyoshi, Hara, &Okada, 2005;Miyoshi &Okada, 2006a,
b; Uezu, Miyoshi, Izuo, & Okada, 2007).

The perceptron learning is an online learning algorithm where
the student updates itsweight vector of a linear dichotomy accord-
ing to the teacher’s signal (Rosenblatt, 1961). Biehl and Schwarze
(1992) introduced the statistical mechanics to the analysis of the
perceptron learning and Inoue and Nishimori (1997) applied the
method to the AdaTron learning in unlearnable cases. Hara and
Okada (2004) discussed the perceptron learningwith amargin and
Miyoshi and his colleagues extended the analysis to the ensemble
learning and/or noisy cases (Miyoshi et al., 2005; Miyoshi & Okada,
2006a, b; Uezu et al., 2007).

In this paper, we consider the case where the teacher has noise
in its output while the student does not. In this case, the learning
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curve, which is defined as the average prediction error, is not
monotonically decreasing but has an overshoot, differently from
other cases analyzed so far (Ikeda, Hanzawa, & Miyoshi, 2013).
Although an analysis for this problem was partially given by some
of the authors (Ikeda et al., 2013), some part was given not theo-
retically but numerically.

This paper gives a theoretically rigorous and complete anal-
ysis above. In addition, we extend the analysis to other online
algorithms for perceptrons, that is, the AdaTron learning and the
Hebbian learning. Our analysis consisted of three steps. In the
first step, we applied the statistical mechanical method to our
problem, i.e., we introduced three order parameters assuming the
thermodynamic limit, and derived a system of differential equa-
tions for the three algorithms. In the second step, we calculated
the ensemble averages that appeared in the differential equations
for each algorithm using Gaussian approximations. Note this had
not been derived analytically yet in Ikeda et al. (2013). In the last
step, we applied an asymptotic analysis to our dynamical system,
i.e., we linearized the equations around their convergence point
and analyzed their behaviors by the eigenvalues and eigenvectors
of the state-transition matrix a.k.a. the system matrix. The three
steps elucidated how and why the overshoot phenomenon occurs.

The remainder of this paper is organized as follows. Section 2
formulates the problem we treated. Sections 3–5 are devoted to
the three steps, that is, statistical mechanical analysis, the calcula-
tion of the ensemble averages and the asymptotic analysis of the
system, respectively. We conclude the paper in Section 6.
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2. Problem statement

Two linear perceptrons are treated: a teacher and a student,
whose connection weights are B = (B1, . . . , BN ) ∈ RN and J =

(J1, . . . , JN ) ∈ RN , respectively. The initial value of each of the
components is independently drawn from the normal distribution
N(0, 1), that is,

⟨Bi⟩ = 0,
⟨
(Bi)2

⟩
= 1, (1)

⟨Ji⟩ = 0,
⟨
(Ji)2

⟩
= 1, (2)

where ⟨·⟩ denotes the mean of ·, as was in Nishimori (2001).
The mth input vector xm = (xm1 , . . . , xmN ) ∈ RN is independently

drawn from the N-dimensional normal distribution N(0, I/N) and
the corresponding output ym of the teacher is produced as

ym = sgn(vm), vm = B · xm + nm
B , (3)

where nm
B is an observation noise obeying N(0, σ 2

B ).
The learning rule is either the standard perceptron learning

(Biehl & Schwarze, 1992; Nishimori, 2001; Rosenblatt, 1961),
the AdaTron learning (Nishimori, 2001), or the Hebbian learn-
ing (Nishimori, 2001). In the perceptron learning, given the mth
input vector xm, the student updates its weight vector Jm as

Jm+1
= Jm + f mxm, (4)

f m = ηymΘ(−ymJm · xm), (5)

where η is a learning coefficient andΘ(·) is the Heaviside function,

Θ(t) =

{
1 t ≥ 0,
0 t < 0. (6)

This means that it updates its weight vector when its output does
not coincide with the teacher’s one.

In the AdaTron learning and the Hebbian learning, the update
functions f m are changed to

f m = ηymJmxmΘ(−ymJm · xm), (7)
f m = ηym, (8)

respectively.
As the learning proceeds and m increases, the weight vector,

Jm, of the student approaches the teacher’s one, B. The problem of
learning curves is to evaluate how fast the covariance coefficient
between Jm and B,

Rm
=

B · Jm

∥B∥∥Jm∥
, (9)

approaches unity in noiseless cases and another value in noisy
cases (0.70 in Fig. 1, for example).

3. Statistical mechanical analysis

3.1. Theory

Themethod to derive the learning curve of the student is essen-
tially the same as Nishimori (2001). We introduce auxiliary order
parameters, Rm in (9) and

lm = ∥Jm∥/
√
N, (10)

and consider the thermodynamic limit, N,m → ∞ and m/N = t .
Then,

∥B∥ =
√
N, ∥J0∥ =

√
N, ∥xm∥ = 1, (11)

hold and the random vector of the inner products, (u, v), where

vm
= B · xm, umlm = Jm · xm (12)

Fig. 1. Dynamics of R. σ 2
B = 1.0, N = 104 , η = 0.1, . . . , 2.0, plots: experiments,

lines: theory (modified from Ikeda et al., 2013).

obeys the two-dimensional normal distribution N(0, Σ) where

Σ =

(
1 Rm

Rm 1

)
. (13)

By self-averaging and omitting the step index m in (4) hereafter,
we get the simultaneous differential equations of the order param-
eters,

l̇ = ⟨fu⟩ +

⟨
f 2
⟩

2l
, (14)

Ṙ =
⟨f v⟩ − ⟨fu⟩ R

l
−

R
2l2

⟨
f 2
⟩
, (15)

where ⟨·⟩ expresses the average over (u, v) and nB ∼ N(0, σ 2
B )

(Nishimori, 2001).

3.2. Experiments

To confirm the validity of the theory above, we conducted
some computer simulations of the perceptron learning under the
condition in Section 2. The experimental values of R coincidedwell
with the theoretical values for any learning coefficient, η (Fig. 1).

As a result of the experiments, the value of R converged to 0.70
for any η due to the noise on the teacher’s output. One notable
property was that R was not monotonically increasing but had an
overshoot. This overshoot phenomenon does not occur in other
cases analyzed so far (Hara & Okada, 2004; Inoue & Nishimori,
1997; Miyoshi et al., 2005; Miyoshi & Okada, 2006a; Nishimori,
2001).

A quantitative analysis of this phenomenon is given using an
asymptotic dynamical system theory in Section 5.

4. Calculation of ensemble averages

The ensemble averages ⟨f v⟩, ⟨fu⟩ and
⟨
f 2
⟩
in (14) and (15) are

difficult to calculate analytically, in general. In fact, we calculated
those for the perceptron learning numerically (Ikeda et al., 2013).
However, we theoretically derived the ensemble averages for the
perceptron learning. In addition, we also calculated those for the
AdaTron learning and the Hebbian learning, which will be given
below.

The ensemble averages ⟨f v⟩, ⟨fu⟩ and
⟨
f 2
⟩
for the perceptron

learning are expressed as

⟨f v⟩ = ⟨ηΘ(−u(v + nB))sgn(v + nB)v⟩

= η

∫
∞

−∞

dnB

∫
∞

−nB

dv
∫ 0

−∞

duP(u, v)P(nB)v
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